Toggle light / dark theme

An unknown methane-producing process is likely at work in the hidden ocean beneath the icy shell of Saturn’s moon Enceladus, suggests a new study published in Nature Astronomy by scientists at the University of Arizona and Paris Sciences & Lettres University.

Giant water plumes erupting from Enceladus have long fascinated scientists and the public alike, inspiring research and speculation about the vast ocean that is believed to be sandwiched between the moon’s rocky core and its icy shell. Flying through the plumes and sampling their chemical makeup, the Cassini spacecraft detected a relatively high concentration of certain molecules associated with hydrothermal vents on the bottom of Earth’s oceans, specifically dihydrogen, methane and carbon dioxide. The amount of methane found in the plumes was particularly unexpected.

“We wanted to know: Could Earthlike microbes that ‘eat’ the dihydrogen and produce methane explain the surprisingly large amount of methane detected by Cassini?” said Régis Ferrière, an associate professor in the University of Arizona Department of Ecology and Evolutionary Biology and one of the study’s two lead authors. “Searching for such microbes, known as methanogens, at Enceladus’ seafloor would require extremely challenging deep-dive missions that are not in sight for several decades.”

“What’s so exciting about this result is that it suggests that these types of nanowire networks can be tuned into regimes with diverse, brain-like collective dynamics, which can be leveraged to optimize information processing,” said Zdenka Kuncic from the University of Sydney in a press release.

Today’s deep neural networks already mimic one aspect of the brain: its highly interconnected network of neurons. But artificial neurons behave very differently than biological ones, as they only carry out computations. In the brain, neurons are also able to remember their previous activity, which then influences their future behavior.

This in-built memory is a crucial aspect of how the brain processes information, and a major strand in neuromorphic engineering focuses on trying to recreate this functionality. This has resulted in a wide range of designs for so-called “memristors”: electrical components whose response depends on the previous signals they have been exposed to.

Long vid. Slight annotation in the comments. A few takaways I liked: We need to move to human data instead of mice. People’s attitude towards life extension should change drastically soon. There is human data among this group and have released it, will keep following it, and some to be released soon. Sinclair thinks he can start primate trials this year. And overall everyone is optimistic.


A couple of weeks ago Avi Roy, alongside Nathan Cheng & Laura Minquini, hosted the Longevity Panel discussion, which assembled some of the biggest scientists in the field currently working on reversing aging.

This discussion was intended to illuminate how they are approaching longevity and to know if we are any closer in achieving it.

This video was made possible by NordPass. Sign up with this link and get 70% off your premium subscription + 1 monrth for free! https://nordpass.com/futurology.

Visit Our Parent Company EarthOne For Sustainable Living Made Simple ➤
https://earthone.io/

The story of humanity is progress, from the origins of humanity with slow disjointed progress to the agricultural revolution with linear progress and furthermore to the industrial revolution with exponential almost unfathomable progress.

This accelerating rate of change of progress is due to the compounding effect of technology, in which it enables countless more from 3D printing, autonomous vehicles, blockchain, batteries, remote surgeries, virtual and augmented reality, robotics – the list can go on and on. These devices in turn will lead to mass changes in society from energy generation, monetary systems, space colonization, automation and much more!

Over the past ten years, the number of known and named viruses has exploded, owing to advances in the technology for finding them, plus a recent change to the rules for identifying new species, to allow naming without having to culture virus and host. One of the most influential techniques is metagenomics, which allows researchers to sample the genomes in an environment without having to culture individual viruses. Newer technologies, such as single-virus sequencing, are adding even more viruses to the list, including some that are surprisingly common yet remained hidden until now. It’s an exciting time to be doing this kind of research, says Breitbart. “I think, in many ways, now is the time of the virome.”


SARS-CoV-2 is just one of nonillions of viruses on our planet, and scientists are rapidly identifying legions of new species.

Rapamycin consistently shows lifespan extension in mice and in my opinion, is the most exciting molecule to possibly extend healthspan in humans. This video dives into the data.

Thanks for watching, I hope you enjoyed the content and found it genuinely useful.
Please consider supporting the channel by signing up to Patreon:
https://www.patreon.com/drbradstanfield.

My supplement stack: http://bit.ly/39vRnXX

Discount Code – CheckWithYourDrFirst.

Three years ago, Arthur Ashkin won the Nobel Prize for inventing optical tweezers, which use light in the form of a high-powered laser beam to capture and manipulate particles. Despite being created decades ago, optical tweezers still lead to major breakthroughs and are widely used today to study biological systems.

However, optical tweezers do have flaws. The prolonged interaction with the can alter molecules and particles or damage them with excessive heat.

Researchers at The University of Texas at Austin have created a new version of optical tweezer technology that fixes this problem, a development that could open the already highly regarded tools to new types of research and simplify processes for using them today.

Scientists have given the all-clear.


A new study from U.S. Army Research Lab (ARL) scientists reveals there’s nothing stopping the military from producing walking combat vehicles—at least from a power perspective, anyway. The research shows legs use essentially the same amount of power as wheels or tracks, so there’s no disadvantage to using them.

In the PLoS ONE study, scientists say both artificial and biological locomotion systems—literally from 1 gram to 35-ton vehicles—have approximately the same power requirements to move a unit of mass over land. Animals or machines using legs, wheels, or tracks use the same amount of energy.