Toggle light / dark theme

👉For business inquiries: [email protected].
✅ Instagram: https://www.instagram.com/pro_robots.

In the quest to overcome the limitations of the human body and mind, scientists worldwide are diligently working on various technologies. The question arises: What will human beings become after undergoing numerous enhancements? Will we retain our identity while embracing the possibilities offered by artificial intelligence? What extraordinary capabilities will biotechnology bestow upon us? And how will our emotions and desires evolve as our bodies undergo transformation?

Join us on a captivating journey to the year 2050, as we delve into the frontiers of scientific research, consult with visionary futurists, and examine the predictions of brilliant minds. Together, we will explore the profound changes that lie ahead!

00.00 — Introduction.

All medical breakthroughs have to start somewhere, and Intellia Therapeutics is ready to show the world the first-in-human gene editing data that could be the start of a | Interim results are in for Intellia and partner Regeneron’s in vivo CRISPR/Cas9 genome editing candidate, NTLA-2001, in patients with transthyretin (ATTR) amyloidosis: and the numbers look good. This is the first time gene editing has been proven to work in humans, which “opens up a whole new area of therapies for patients that wasn’t there.”

UMass Amherst researchers have pushed forward the boundaries of biomedical engineering one hundredfold with a new method for DNA detection with unprecedented sensitivity.

“DNA detection is in the center of bioengineering,” says Jinglei Ping, lead author of the paper that appeared in Proceedings of the National Academy of Sciences.

Ping is an assistant professor of mechanical and , an adjunct assistant professor in and affiliated with the Center for Personalized Health Monitoring of the Institute for Applied Life Sciences. “Everyone wants to detect the DNA at a low concentration with a high sensitivity. And we just developed this method to improve the sensitivity by about 100 times with no cost.”

Venture Investing To Catalyze The Next Generation Of Founder-Led, Longevity Biotech Companies — Dr. Alex Colville, Ph.D., Co-Founder and General Partner — age1.


Dr. Alex Colville, Ph.D. is Co-Founder and General Partner of age1 (https://age1.com/), a venture capital firm focused on catalyzing the next generation of founder-led, longevity biotech companies, with a strategy of building a community of visionaries advancing new therapeutics, tools, and technologies targeting aging and age-related diseases.

With a recent initial closing of US$35 million, age1 will be focusing on founders and companies at the earliest stages of first-money in, pre-seed and seed funding, and is resourced to continue to support companies through later rounds.

A typical vaccine teaches the human immune system to recognize a virus or bacteria as an enemy that should be attacked. The new “inverse vaccine” does just the opposite: it removes the immune system’s memory of one molecule. While such immune memory erasure would be unwanted for infectious diseases, it can stop autoimmune reactions like those seen in multiple sclerosis, type I diabetes, or rheumatoid arthritis, in which the immune system attacks a person’s healthy tissues.

The inverse vaccine, described in Nature Biomedical Engineering, takes advantage of how the liver naturally marks molecules from broken-down cells with “do not attack” flags to prevent autoimmune reactions to cells that die by natural processes. PME researchers coupled an antigen — a molecule being attacked by the immune system— with a molecule resembling a fragment of an aged cell that the liver would recognize as friend, rather than foe. The team showed how the vaccine could successfully stop the autoimmune reaction associated with a multiple-sclerosis-like disease.

“In the past, we showed that we could use this approach to prevent autoimmunity,” said Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering and lead author of the new paper. “But what is so exciting about this work is that we have shown that we can treat diseases like multiple sclerosis after there is already ongoing inflammation, which is more useful in a real-world context.”

The last 2 questions and the answers are great. The first starts at 30 minutes. And I like his answer to the 2nd question especially, the time is 33:54. “What is giving me great hope is that we’re entering the phases where we have more than enough tools to get really get close to escape velocity.”


Genome Engineering for Healthy Longevity – George Church at Longevity Summit Dublin 2023.

#GeorgeChurch #GenomeEngineering #HealthyLongevity #LongevitySummitDublin2023 #AgingResearch #DublinConference #LongevityScience #BiomedicalEngineering #GeneticModification #DublinTalks #GenomicInnovation #MedicalScience #LongevityResearch #PrecisionMedicine #AgingInterventions #Healthspan #GenomeEditing #AntiAging #LongevityInsights #Genetics #Innovation

Genome engineering may be the future of medicine, but it relies on evolutionary advances made billions of years ago in primordial bacteria, the original masters of gene editing.

Modern day genome engineers like Columbia’s Sam Sternberg are always looking forward, modifying these ancient systems and pushing them to perform ever more complex feats of gene editing.

But to uncover , it sometimes pays to look backward in time to understand how bacteria first created the original systems, and why.

A new CRISPR-based gene-editing tool has been developed which could lead to better treatments for patients with genetic disorders. The tool is an enzyme, AsCas12f, which has been modified to offer the same effectiveness but at one-third the size of the Cas9 enzyme commonly used for gene editing. The compact size means that more of it can be packed into carrier viruses and delivered into living cells, making it more efficient.

Researchers created a library of possible AsCas12f mutations and then combined selected ones to engineer an AsCas12f with 10 times more editing ability than the original unmutated type. This engineered AsCas12f has already been successfully tested in mice and has the potential to be used for new, more effective treatments for patients in the future.

By now you have probably heard of CRISPR, the gene-editing tool which enables researchers to replace and alter segments of DNA. Like genetic tailors, scientists have been experimenting with “snipping away” the genes that make mosquitoes malaria carriers, altering food crops to be more nutritious and delicious, and in recent years begun to overcome some of the most challenging diseases and genetic disorders.

This is leading to even better brain engineering 👏 🙌 👌 😀 😄.


Computer-augmented brains, cures to blindness, and rebuilding the brain after injury all sound like science fiction. Today, these disruptive technologies aren’t just for Netflix, “Terminator,” and comic book fodder — in recent years, these advances are closer to reality than some might realize, and they have the ability to revolutionize neurological care.

Neurologic disease is now the world’s leading cause of disability, and upwards of 11 million people have some form of permanent neurological problem from traumatic brain injuries and stroke. For example, if a traumatic brain injury has damaged the motor cortex — the region of the brain involved in voluntary movements — patients could become paralyzed, without hope of regaining full function. Or some stroke patients can suffer from aphasia, the inability to speak or understand language, due to damage to the brain regions that control speech and language comprehension.

Thanks to recent advances, sometimes lasting neurologic disease can be prevented. For example, if a stroke patient is seen quickly enough, life-threatening or-altering damage can be avoided, but it’s not always possible. Current treatments to most neurologic disease are fairly limited, as most therapies, including medications, aim to improve symptoms but can’t completely recover lost brain function.

The recent introduction of the breathtaking AI tool ChatGPT has sparked a national dialogue about the future of artificial intelligence in health care, education, research, and beyond. In this session, four UCSF experts discuss AI’s current and potential uses, in areas ranging from research to education to clinical care. After a brief presentation by each speaker, DOM Chair Bob Wachter moderates a far-ranging panel discussion on the health care applications of ChatGPT.

Speakers:
Atul Butte, MD, PhD, professor of Pediatrics, Bioengineering and Therapeutic Sciences, and Epidemiology and Biostatistics; director, UCSF Bakar Computational Health Sciences Institute; chief data scientist, University of California Health System.

Daniel Lowenstein, MD, professor of Neurology; former executive vice chancellor and provost, UCSF

Sara Murray, MD, MAS, associate professor, Division of Hospital Medicine at UCSF Health; associate chief medical information officer, Inpatient Care and Data Science, UCSF Health.