Toggle light / dark theme

Breaking the bacteria barriers.


If that field is at just the right magnitude, it will open up pores within the cell membrane, through which DNA can flow. But it can take scientists months or even years to figure out the exact electric field conditions to reversibly unlock a membrane’s pores.

A new microfluidic device developed by MIT engineers may help scientists quickly home in on the electric field “sweet spot” — the range of electric potentials that will harmlessly and temporarily open up membrane pores to let DNA in. In principle, the simple device could be used on any microorganism or cell, significantly speeding up the first step in genetic engineering.

“We’re trying to reduce the amount of experimentation that’s needed,” said Cullen Buie, the Esther and Harold E. Edgerton Associate Professor of mechanical engineering at MIT. “Our big vision for this device and future iterations is to be able to take a process that usually takes months or years, and do it in a day or two.”

Read more

By Warren Duffie, Office of Naval Research

An exciting new scientific frontier-synthetic biology-took center stage as a celebrated scientist from the Massachusetts Institute of Technology (MIT) recently spoke at the headquarters of the Office of Naval Research (ONR).

As part of a Distinguished Lecture Series celebrating ONR’s 70th anniversary, world-class scientists, researchers and experts from diverse fields will be speaking at ONR in 2016. Dr. Christopher Voigt, an MIT professor of biological engineering, inaugurated the lecture series with a look at the revolutionary potential of synthetic biology.

Read more

I believe that AI holds a lot of promise and many great things; however, we have to correct some very critical issues 1st before compound a huge issue that we have today. And, that is Cyber Security and re-establish trust with our consumers and customers. Without these 2 being fully addressed; you will compound these two challenges with AI plus run the risk of having an IoT that most people will not wish to use due to hackers, bad data, etc. Not to mention lawsuits for Wi-Fi connected robotics that were hacked and injured or worse some innocent person.

I believe need to ensure priorities are in order before we make things worse.


Unexpected convergent consequences…this is what happens when eight different exponential technologies all explode onto the scene at once.

This post (the second of seven) is a look at artificial intelligence. Future posts will look at other tech areas.

An expert might be reasonably good at predicting the growth of a single exponential technology (e.g., the Internet of Things), but try to predict the future when A.I., robotics, VR, synthetic biology and computation are all doubling, morphing and recombining. You have a very exciting (read: unpredictable) future. This year at my Abundance 360 Summit I decided to explore this concept in sessions I called “Convergence Catalyzers.”

Read more

I find this a bit of a stretch. Maybe some jobs; however, not all and there will be (like any new technology, etc.) new career fields created.


“Can the global economy adapt to greater than 50 per cent unemployment? Will those out of work be content to live a life of leisure?” Vardi noted.

“I believe that society needs to confront this question before it is upon us: If machines are capable of doing almost any work humans can do, what will humans do?” he said.

“The question I want to put forward is, ‘Does the technology we are developing ultimately benefit mankind?’” said Vardi, a member of both the US National Academy of Engineering and the National Academy of Science.

Read more

The pace at which robots and intelligent machines are able to take over the jobs traditionally performed by humans will result in more than half the population being unemployed within 30 years, an expert in computing has predicted.

While some may look forward to a life of leisure, many others face the dismal prospect of long-term unemployment as a result of the rise of smart machines, from self-driving cars and intelligent drones to smart financial-trading machines, said Moshe Vardi, professor of computational engineering at Rice University in Houston, Texas.

Read more

We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

Read more

Becoming immortal is one of mankind’s many quixotic notions that most people will relegate to the world of fantasy and science fiction. However, there is a subset of prominent scientists who believe that immortality is not only attainable, but it is something that will come to fruition in as little as 25 years. This idea is shared by men like Google’s Director of Engineering, Ray Kurzweil; Tesla Motors CEO, Elon Musk; and one of the most interesting presidential candidates outside of Donald Trump and Deez Nuts, Zoltan Istvan. All three men identify as trans-humanist, and for those who don’t know, trans-humanism is the idea that mankind will one day be able to transcend our biological limitations through the use of science and technology; not to mention, the movement has accumulated over 3 million supporters worldwide. So the question remains, with the multitude of prominent intellectuals who believe immortality is a tangible goal, just how will they go about achieving it? Well, the six answers below could possibly hold the key to everlasting life.

Number Six: Uploading Minds to Computers. Futurists believe that at some point in the near future we will be able to copy and scan all of the data that exists in our brains and upload the information into a computer. This will allow us to perpetually exist as incorporeal inhabitants of cyberspace. Of course, the idea of mind uploading is still purely science fiction, but if it ever becomes tangible, progeny could possibly live in a limitless world, that echoes notions expressed in the Matrix; minus the robot despots.

Read more

I gave an interview for a queer people of interest blog and plugged the lifeboat foundation. Thought I would share the information here.


Phillipe Bojorquez is an engineer, activist, and artist: He has been described as “a futurist with a community minded bent.” He is a engineer, with experience at First Dibs, Samsung, Boxee, and Canary. He is a board member of The Lifeboat Foundation, an independent research group dedicated to helping humanity survive the risks posed by new technologies. His research areas include artificial intelligence, robotics, engineering, and philosophy. Bojorquez is a past board member of CRUX, NYC’s LGBT rock climbing organization, and an early contributor and organizer of Vegans in Vegas, a yearly gathering of activists and entrepreneurs at the forefront of nutrition and sustainability.

Read more

With the recent use of genetically engineered mosquitoes in Brazil to halt the spread of the Zika virus, we might be beginning to see some major health improvements as a consequence of the genetics revolution. A world in which mosquitoes were all but eliminated from the ecosystem would look quite different from the world of today, especially for people living in the tropics where the threat of mosquito transmitted infections does more than just mar an otherwise tranquil margarita sipped from the veranda of a beach resort. This is not to beggar the more mundane advantages of a mosquito-free habitat, but rather call attention to the fact that for large parts of the world, including Brazil, mosquitoes can be the difference between life and death.

Ironically, the genetic changes made to the Aedes aegypti mosquito in order to halt the spread of the Zika virus are deceptively simple. The company behind the project, Oxitec, used a modified version of something called the “Sterile Insect Technique” to create their hybrid specimens. The end goal of this process is to produce a male mosquito possessing a “self-limiting gene.” When these males mate with wild female mosquitoes, they create non viable offspring that perish soon after the birth. The end result is a rapid drop in the mosquito population of a given area.

When compared with some of the more hazardous forms of mosquito control currently in use such as massive spraying of DEET and chemical infusers popular throughout Asia, sterilizing mosquitoes sounds like an imminently reasonable approach. As a journalist who once saw his roadside samosa blasted by a massive spray of DEET from an oncoming municipal vehicle in India, I can personally attest to a preference for a genetic solution.

Read more