Menu

Blog

Archive for the ‘bioengineering’ category: Page 100

Jan 8, 2021

Scientists Created Bacteria With a Synthetic Genome. Is This Artificial Life?

Posted by in categories: bioengineering, biotech/medical

Circa 2019 o.o!


In a milestone for synthetic biology, colonies of E. coli thrive with DNA constructed from scratch by humans, not nature.

Jan 3, 2021

Biochemists Switch DNA Functions on and Off Using Light

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Biochemists use protein engineering to transfer photocaging groups to DNA.

DNA (deoxyribonucleic acid) is the basis of life on earth. The function of DNA is to store all the genetic information, which an organism needs to develop, function and reproduce. It is essentially a biological instruction manual found in every cell.

Biochemists at the University of Münster have now developed a strategy for controlling the biological functions of DNA with the aid of light. This enables researchers to better understand and control the different processes which take place in the cell – for example epigenetics, the key chemical change and regulatory lever in DNA.

Jan 2, 2021

Engineered bat virus stirs debate over risky research

Posted by in categories: bioengineering, biotech/medical

#JustAReminder why knowing the origin of this disease is so important. Shi Zhengli who ran the lab in Wuhan worked with Ralph Baric on this gain of function research.

Declan Butler.

12 November 2015

Continue reading “Engineered bat virus stirs debate over risky research” »

Jan 1, 2021

Why the Future Will Be Weird with Isaac Arthur

Posted by in categories: bioengineering, existential risks, nanotechnology, robotics/AI, space travel

Science and Futurism with Isaac Arthur is a YouTube channel which focuses on exploring the depths of concepts in science and futurism. Since its first episode in 2014, SFIA has considered topics ranging from the seemingly mundane, to the extremely exotic, featuring episodes on megastructure engineering, interstellar travel, the future of earth, and the Fermi paradox, among others. Yet regardless of how strange a subject may seem, Isaac always tries to ensure that the discussion is grounded in the known science of today.

Isaac Arthur joins John Michael Godlier on today’s Event Horizon to discuss these subjects, the future past 2020. Thoughts on life extension. Nanotechnology. Artificial intelligence. The Fermi paradox.

Continue reading “Why the Future Will Be Weird with Isaac Arthur” »

Jan 1, 2021

Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine

Posted by in categories: bioengineering, biotech/medical, life extension, nanotechnology, neuroscience

Shared last year, but with the talk of future regenerative medicine I think it is important: Regenerative medicine aims to engineer tissue constructs that can recapitulate the functional and structural properties of native organs. Most novel regenerative therapies are based on the recreation of a three-dimensional environment that can provide essential guidance for cell organization, survival, and function, which leads to adequate tissue growth. The primary motivation in the use of conductive nanomaterials in tissue engineering has been to develop biomimetic scaffolds to recapitulate the electrical properties of the natural extracellular matrix, something often overlooked in numerous tissue engineering materials to date. In this review article, we focus on the use of electroconductive nanobiomaterials for different biomedical applications, particularly, very recent advancements for cardiovascular, neural, bone, and muscle tissue regeneration. Moreover, this review highlights how electroconductive nanobiomaterials can facilitate cell to cell crosstalk (i.e., for cell growth, migration, proliferation, and differentiation) in different tissues. Thoughts on what the field needs for future growth are also provided.


Bioelectricity.

Dec 31, 2020

4 Ways CRISPR Is More Than Just Gene Editing

Posted by in categories: bioengineering, biotech/medical

While it’s probably most famous for its role in gene editing, CRISPR does more than just that: its ability to precisely cut and alter DNA could lead to new antibiotics, faster diagnosis tools, and more.

Hosted by: Hank Green.

Continue reading “4 Ways CRISPR Is More Than Just Gene Editing” »

Dec 30, 2020

Aerolysin nanopores decode digital information stored in tailored macromolecular analytes

Posted by in categories: bioengineering, biological, chemistry, computing, encryption, genetics, information science

Digital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of “big data.” The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry. In comparison, nanopore technology can be faster, cheaper, nondestructive and provide detection at the single-molecule level; moreover, it can be massively parallelized and miniaturized in portable devices. Here, we demonstrate the ability of engineered aerolysin nanopores to accurately read, with single-bit resolution, the digital information encoded in tailored informational polymers alone and in mixed samples, without compromising information density. These findings open promising possibilities to develop writing-reading technologies to process digital data using a biological-inspired platform.

DNA has evolved to store genetic information in living systems; therefore, it was naturally proposed to be similarly used as a support for data storage (1–3), given its high-information density and long-term storage with respect to existing technologies based on silicon and magnetic tapes. Alternatively, synthetic informational polymers have also been described (5–9) as a promising approach allowing digital storage. In these polymers, information is stored in a controlled monomer sequence, a strategy that is also used by nature in genetic material. In both cases, single-molecule data writing is achieved mainly by stepwise chemical synthesis (3, 10, 11), although enzymatic approaches have also been reported (12). While most of the progress in this area has been made with DNA, which was an obvious starting choice, the molecular structure of DNA is set by biological function, and therefore, there is little space for optimization and innovation.

Dec 24, 2020

AI-Designed Serotonin Sensor May Help Scientists Study Sleep and Mental Health

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, health, robotics/AI

Summary: Artificial intelligence technology redesigned a bacterial protein that helps researchers track serotonin in the brain in real-time.

Source: NIH

Serotonin is a neurochemical that plays a critical role in the way the brain controls our thoughts and feelings. For example, many antidepressants are designed to alter serotonin signals sent between neurons.

Continue reading “AI-Designed Serotonin Sensor May Help Scientists Study Sleep and Mental Health” »

Dec 23, 2020

2020 in Neuroscience, Longevity, and AI—and What’s to Come

Posted by in categories: bioengineering, biotech/medical, robotics/AI, space, virtual reality

Honorable Mentions

One more scientific brilliance this year is the use of light in neuroscience and tissue engineering. One study, for example, used lasers to directly print a human ear-like structure under the skin of mice, without a single surgical cut. Another used light to incept smell in mice, artificially programming an entirely new, never-seen-in-nature perception of a scent directly into their brains. Yet another study combined lasers with virtual reality to dissect how our brains process space and navigation, “mentally transporting” a mouse to a virtual location linked to a reward. To cap it off, scientists found a new way to use light to control the brain through the skull without surgery—though as of now, you’ll still need gene therapy. Given the implications of unauthorized “mind control,” that’s probably less of a bug and more of a feature.

We’re nearing the frustratingly slow, but sure, dying gasp of Covid-19. The pandemic defined 2020, but science kept hustling along. I can’t wait to share what might come in the next year with you—may it be revolutionary, potentially terrifying, utterly bizarre or oddly heart-warming.

Dec 21, 2020

Biologists have Found a Way to Regenerate Neurons in Mice with Parkinson’s Using CRISPR Gene Editing

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

Using CRISPR to alter the genetics of astrocytes in mice, researchers hope they’ve discovered how to regenerate neurons in patients with Parkinsons disease.

Page 100 of 221First979899100101102103104Last