Toggle light / dark theme

German scientists create see-through human ORGANS in step toward 3D-printed body parts

German scientists create see-through ORGANS in a step toward 3D-printed parts that could be transplanted in the human body…


Researchers in Germany have created transparent human organs using a new technology that could pave the way to print three-dimensional body parts such as kidneys for transplants.

Scientists led by Ali Erturk at Ludwig Maximilians University in Munich have developed a technique that uses a solvent to make organs such as the brain and kidneys transparent.

The organ is then scanned by lasers in a microscope that allows researchers to capture the entire structure, including the blood vessels and every single cell in its specific location.

Read more

2D stacking method could make 3D-printed organs viable

In an effort to scale up the manufacture of biomaterials, researchers at UC Berkeley have combined bioprinting, a robotic arm, and flash freezing in a method that may one day allow living tissue, and even whole organs, to be printed on demand. By printing cells into 2D sheets and then freezing them as assembled, the new technique improves cell survival during both building and storage.

Read more

Dr. Doris Taylor — Texas Heart Institute — IdeaXme — Ira Pastor — “How to Build a New Heart”

Metamaterials Embedded with Geometrical Optics Could Simplify Optical Devices

The researchers believe that other MEGOs that absorb, enhance, reflect, or bend waves in new ways could be created using patterned 3D printing. The current Tufts study utilizes stereolithography. Other 3D-printing technologies, such as two-photon polymerization, could provide printing resolution down to 200 nm, which would enable the fabrication of even finer metamaterials that could detect and manipulate electromagnetic signals of even smaller wavelengths, potentially including visible light. As resolution in 3D printing improves, MEGO devices could reach terahertz frequencies.


MEDFORD, Mass., April 9, 2019 — 3D-printed metamaterials developed by a Tufts University engineering team display properties not found in conventional materials. The fabrication methods used by the team demonstrate how stereolithography-based 3D printers can be used to create 3D optical devices through a process that fuses metamaterials with geometrical optics, or MEGO. The MEGO devices can be fabricated at a lower cost than devices made using typical fabrication methods.

Read more

3D printed tires and shoes that self-repair

Instead of throwing away your broken boots or cracked toys, why not let them fix themselves? Researchers at the University of Southern California Viterbi School of Engineering have developed 3D-printed rubber materials that can do just that.

Assistant Professor Qiming Wang works in the world of 3D printed materials, creating new functions for a variety of purposes, from flexible electronics to sound control. Now, working with Viterbi students Kunhao Yu, An Xin, and Haixu Du, and University of Connecticut Assistant Professor Ying Li, they have made a new material that can be manufactured quickly and is able to repair itself if it becomes fractured or punctured. This material could be game-changing for industries like shoes, tires, soft robotics, and even electronics, decreasing manufacturing time while increasing product durability and longevity.

The material is manufactured using a 3D printing method that uses photopolymerization. This process uses light to solidify a liquid resin in a desired shape or geometry. To make it self-healable, they had to dive a little deeper into the chemistry behind the material.

Read more

The promise

One of the research’s lead investigators, Michael Hill, said in a press release, “We envision this new technique as a low-cost office procedure done under local anesthesia. The whole process would take about five minutes.”

While currently in the process of arranging licensing for their procedure, the researchers are already looking toward using it with other collagen tissue such as tendons, and even corneas for the correction of vision issues. In animal tests, they’ve already had some success with reshaping a cornea using a 3D-printed contact lens painted with electrodes and to which they applied electrical current to soften the cornea. This is especially exciting due to the structure of its collagen fibers. Says Hill during the presentation, “It turns out that in order to remain transparent, the [layers of] collagen fibers are all perfectly aligned.” Molecular surgery allows correction of the cornea without disrupting that required layering.

/* */