Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Tesla’s Robotaxi Strategy EXPLAINED

Questions to inspire discussion.

Business Strategy and Market Impact.

💼 Q: How is Tesla positioning its robo taxi service in the market? A: Tesla is aiming to change the world towards sustainable transport, winning the first two-month race in deployment, service area, and metrics, rather than engaging in an “online dork battle” about robo taxis.

📊 Q: What’s Tesla’s approach to incidents in its robo taxi service? A: Tesla is carefully managing the launch to minimize the impact of incidents on reaching peak gross margin and revenue, prioritizing this over the cost of safety monitors.

FSD Supervised in Australia.

🦘 Q: How successful is Tesla’s FSD Supervised rollout in Australia? A: It’s considered a success story, with 8 cameras processing live information, navigating complex environments like Brisbane’s “spaghetti bowl” of ramps and exits, and handling roundabouts and highway merges.

Astronomers uncover enormous bubble bigger than our Solar System

A giant bubble of gas and dust surrounds the red supergiant DFK 52, likely created in a powerful outburst 4,000 years ago. Astronomers are baffled at how the star survived without going supernova, and suspect a hidden companion may have played a role. This discovery could reveal clues about the final stages of massive stars.

Astronomers from Chalmers University of Technology, Sweden, have discovered a vast and expanding bubble of gas and dust surrounding a red supergiant star – the largest structure of its kind ever seen in the Milky Way. The bubble, which contains as much mass as the Sun, was blown out in a mysterious stellar eruption around 4,000 years ago. Why the star survived such a powerful event is a puzzle, the scientists say.

The new results are published in the scientific journal Astronomy and Astrophysics, and the team was led by Mark Siebert, Chalmers, Sweden. Using the ALMA radio telescope in Chile, the researchers observed the star DFK 52 – a red supergiant similar to the well-known star Betelgeuse.

No sorting needed: Plasma torch shows promise for hassle-free plastic recycling

The inconvenience of separating plastics for recycling may soon be a thing of the past. A team of Korean researchers has developed the world’s first technology that can chemically recycle mixed waste plastics into raw materials in a highly selective manner without the need for strict sorting or label removal.

The Korea Institute of Machinery and Materials (KIMM), under the National Research Council of Science & Technology (NST), announced that its Center for Plasma Process for Organic Material Recycling, carried out in collaboration with the Korea Research Institute of Chemical Technology (KRICT), Korea Institute of Industrial Technology (KITECH), Korea Institute of Science and Technology (KIST), and several universities, has successfully developed an innovative plasma conversion process.

This process transforms a wide variety of plastics directly into raw chemical feedstocks, setting a new milestone for Korea’s chemical industry and environmental policy.

Precise tissue deformation measurement technique promises better-fitting sportswear and medical apparel

Soft tissue deformation during body movement has long posed a challenge to achieving optimal garment fit and comfort, particularly in sportswear and functional medical wear.

Researchers at The Hong Kong Polytechnic University (PolyU) have developed a novel anthropometric method that delivers highly to enhance the performance and design of compression-based apparel.

Prof. Joanne YIP, Associate Dean and Professor of the School of Fashion and Textiles at PolyU, and her research team pioneered this anthropometric method using image recognition algorithms to systematically access tissue deformation while minimizing motion-related errors.

Pancreatic insulin disruption triggers bipolar disorder-like behaviors in mice, study shows

Bipolar disorder is a psychiatric disorder characterized by alternating episodes of depression (i.e., low mood and a loss of interest in everyday activities) and mania (i.e., a state in which arousal and energy levels are abnormally high). On average, an estimated 1–2% of people worldwide are diagnosed with bipolar disorder at some point during their lives.

Bipolar disorder can be highly debilitating, particularly if left untreated. Understanding the neural and physiological processes that contribute to its emergence could thus be very valuable, as it could inform the development of new prevention and treatment strategies.

In addition to experiencing periodic changes in mood, individuals diagnosed with this disorder often exhibit some metabolic symptoms, including changes in their blood sugar levels. While some previous studies reported an association between blood sugar control mechanisms and bipolar disorder, the biological link between the two has not yet been uncovered.

Here we glow: New organic liquid provides efficient phosphorescence

The nostalgic “glow-in-the-dark” stars that twinkle on the ceilings of childhood bedrooms operate on a phenomenon called phosphorescence. Here, a material absorbs energy and later releases it in the form of light. However, recent demand for softer, phosphorescent materials has presented researchers with a unique challenge, as producing organic liquids with efficient phosphorescence at room temperature is considered difficult.

Now, researchers at the University of Osaka have attempted to tackle this problem by producing an organic liquid that phosphoresces in the ambient environment. This discovery is published in Chemical Science.

Traditional materials that can phosphoresce at contain heavy metal atoms. These phosphors are used to create the colored electronic displays we utilize every day, such as those in our smartphones. Organic materials, which contain carbon and (similar to materials found in nature), are more environmentally friendly.

Why Do We Need Sleep? Oxford Scientists Trace the Answer to Mitochondria

Sleep may serve as more than rest for the mind; it may also function as essential upkeep for the body’s energy systems. A new study from University of Oxford researchers, published in Nature, shows that the drive to sleep is caused by electrical stress building up in the tiny energy-producing structures of brain cells.

This finding provides a concrete physical explanation for the biological need for sleep and has the potential to reshape scientific thinking about sleep, aging, and neurological disorders.

/* */