Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

NitroGen: A Foundation Model for Generalist Gaming Agents

We introduce NitroGen, a vision-action foundation model for generalist gaming agents that is trained on 40,000 hours of gameplay videos across more than 1,000 games. We incorporate three key ingredients: 1) an internet-scale video-action dataset constructed by automatically extracting player actions from publicly available gameplay videos, 2) a multi-game benchmark environment that can measure cross-game generalization, and 3) a unified vision-action policy trained with large-scale behavior cloning. NitroGen exhibits strong competence across diverse domains, including combat encounters in 3D action games, high-precision control in 2D platformers, and exploration in procedurally generated worlds. It transfers effectively to unseen games, achieving up to 52% relative improvement in task success rates over models trained from scratch.

Chromosome shattering in cancer

Cancer cells often contain an abnormal number of chromosomes as a result of incorrect chromosome segregation during cell division.

These fragments of genetic material can be encapsulated by a membrane, forming small nucleus-like structures called micronuclei. These structures often rupture, exposing chromatin (DNA and associated proteins) to the harsh environment of the cytoplasm, which can lead to large-scale DNA damage in a process called chromothripsis, or chromosome shattering and scrambling.

In a new Science study, researchers report that the cytoplasmic protein NEDD4-binding protein 2 may be responsible for chromothripsis.

Learn more in a new.


A protein that cuts double-stranded DNA contributes to chromosome scrambling in human cancer cells.

Stanley Clarke and Marcin Imieliński Authors Info & Affiliations

How tumors thrive in acidic, low-oxygen environments?

The authors determined the 3.3 Å cryoEM structure of the human NBCn1 outward facing (OF) conformational state with densities corresponding to the transported ions in the ion coordination site. They also generated NBCn1 inward facing (IF) and intermediate (occluded) structures and characterized the transport cycle and the ion dynamics in the IF and OF states.

The results showed that NBCn1 utilizes an elevator-type transport mechanism with a small vertical shift of the ion coordination site between OF and IF conformational states and that the transported ions permeate without significant energy barriers.

The researchers showed that NBCn1 moves two sodium ions and one carbonate ion through an efficient “elevator-like” motion that minimizes energy use. This allows NBCn1 to achieve a high transport rate of approximately 15,000 ions per second, helping tumor cells maintain an internal pH that promotes survival, division and resistance to acidic stress.

By understanding the structure and function of NBCn1, the study provides a blueprint for designing drugs that could potentially block this transporter and disrupt the internal chemical balance that cancer cells depend on. Targeting this protein in cancer cells specifically could offer a precise way to weaken tumors while minimizing harm to normal tissue.


Scientists have characterized the structure and function of a key survival protein in breast cancer cells that helps explain how these tumors resist environmental stress and thrive in acidic, low-oxygen environments that would normally be toxic to healthy cells.

Breast cancer cells rely on a transporter protein called NBCn1 to bring alkali ions into the cell and maintain a favorable internal pH.

How to build an A.I. brain that can surpass human intelligence | Ben Goertzel

How to build an A.I. brain that can surpass human intelligence.

Watch the newest video from Big Think: https://bigth.ink/NewVideo.
Join Big Think Edge for exclusive videos: https://bigth.ink/Edge.

Artificial intelligence has the capability to far surpass our intelligence in a relatively short period of time. But AI expert Ben Goertzel knows that the foundation has to be strong for that artificial brain power to grow exponentially. It’s all good to be super-intelligent, he argues, but if you don’t have rationality and empathy to match it the results will be wasted and we could just end up with an incredible number-cruncher. In this illuminating chat, he makes the case for thinking bigger. Ben Goertzel’s most recent book is AGI Revolution: An Inside View of the Rise of Artificial General Intelligence.

BEN GOERTZEL:

Ben Goertzel is CEO and chief scientist at SingularityNET, a project dedicated to creating benevolent decentralized artificial general intelligence. He is also chief scientist of financial prediction firm Aidyia Holdings and robotics firm Hanson Robotics; Chairman of AI software company Novamente LLC; Chairman of the Artificial General Intelligence Society and the OpenCog Foundation. His latest book is AGI Revolution: An Inside View of the Rise of Artificial General Intelligence.

TRANSCRIPT:

Surprise: Free Will Needs Quantum Physics to Fail, Physicists Show

Check out the interactive lessons on Brilliant! Start learning for free at https://brilliant.org/sabine/ and get 20% off a premium subscription, which includes daily unlimited access!

Some physicists believe that human consciousness is somehow linked to the indeterministic element of quantum physics. But according to a surprising new argument that just appeared on the arXiv, a world where everything is ruled by quantum physics is incompatible with the idea of free will. Let’s take a look.

Paper: https://arxiv.org/abs/2510.

👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ / sabine.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 📚 Buy my book ➜ https://amzn.to/3HSAWJW #sciencenews #science #physics #philosophy.
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
📚 Buy my book ➜ https://amzn.to/3HSAWJW

#sciencenews #science #physics #philosophy

Rethinking recurrent brain activity: Core neurons provide an alternative explanation

Neuroscientists have been trying to understand how the human brain supports numerous advanced capabilities for centuries. The cerebral cortex, the outer layer of the brain, is now known to be responsible for many of these capabilities, including reasoning, decision-making, the processing of sensory information and voluntary movement.

Neurons in the cerebral cortex often become active consecutively or simultaneously for brief periods of time, following recurrent patterns of activity. These recurring neuron firing patterns have been linked to sensorimotor coordination, the brain’s ability to link sensory inputs (i.e., the information collected via the senses) to movements.

For decades, repeating neuronal activity has been described in the context of attractor dynamics theory, a physics-based framework that frames recurring neuron firing patterns as so-called attractors. Attractors are stable states or activity patterns toward which a system naturally returns to.

Physicists found a way to see heat in empty space

Physicists have found a clever way to detect the elusive Unruh effect without extreme accelerations. By using atoms that emit light cooperatively between mirrors, acceleration subtly shifts when a powerful light burst appears. That early flash acts like a timestamped signature of the effect. The method could make once-theoretical physics experimentally reachable.

Living cells may generate electricity from motion

Cells may generate their own electrical signals through microscopic membrane motions. Researchers show that active molecular processes can create voltage spikes similar to those used by neurons. These signals could help drive ion transport and explain key biological functions. The work may also guide the design of intelligent, bio-inspired materials.

/* */