Classical biomedical data science models are trained on a single modality and aimed at one specific task. However, the exponential increase in the size and capabilities of the foundation models inside and outside medicine shows a shift toward task-agnostic models using large-scale, often internet-based, data. Recent research into smaller foundation models trained on specific literature, such as programming textbooks, demonstrated that they can display capabilities similar to or superior to large generalist models, suggesting a potential middle ground between small task-specific and large foundation models. This study attempts to introduce a domain-specific multimodal model, Congress of Neurological Surgeons (CNS)-Contrastive Language-Image Pretraining (CLIP), developed for neurosurgical applications, leveraging data exclusively from Neurosurgery Publications.
METHODS:
We constructed a multimodal data set of articles from Neurosurgery Publications through PDF data collection and figure-caption extraction using an artificial intelligence pipeline for quality control. Our final data set included 24 021 figure-caption pairs. We then developed a fine-tuning protocol for the OpenAI CLIP model. The model was evaluated on tasks including neurosurgical information retrieval, computed tomography imaging classification, and zero-shot ImageNet classification.