Toggle light / dark theme

Immune molecules called cytokines play important roles in the body’s defense against infection, helping to control inflammation and coordinating the responses of other immune cells. A growing body of evidence suggests that some of these molecules also influence the brain, leading to behavioral changes during illness.

Two new studies from MIT and Harvard Medical School, focusing on a cytokine called IL-17, now add to that evidence. The researchers found that IL-17 acts on two distinct brain regions—the amygdala and the somatosensory cortex—to exert two divergent effects. In the amygdala, IL-17 can elicit feelings of anxiety, while in the cortex it promotes sociable behavior.

These findings suggest that the immune and nervous systems are tightly interconnected, says Gloria Choi, an associate professor of brain and cognitive sciences, a member of MIT’s Picower Institute for Learning and Memory, and one of the senior authors of the studies.

For many years, some parents have noticed that their autistic children’s behavioral symptoms diminished when they had a fever. This phenomenon has been documented in at least two large-scale studies over the past 15 years, but it was unclear why fever would have such an effect.

A new study from MIT and Harvard Medical School sheds light on the cellular mechanisms that may underlie this phenomenon. In a study of , the researchers found that in some cases of infection, an immune molecule called IL-17a is released and suppresses a small region of the brain’s cortex that has previously been linked to social behavioral deficits in mice.

“People have seen this phenomenon before [in people with autism], but it’s the kind of story that is hard to believe, which I think stems from the fact that we did not know the mechanism,” says Gloria Choi, the Samuel A. Goldblith Career Development Assistant Professor of Applied Biology and an assistant professor of brain and cognitive sciences at MIT. “Now the field, including my lab, is trying hard to show how this works, all the way from the and molecules to receptors in the brain, and how those interactions lead to behavioral changes.”

They just want to save science! But not from the people actually defunding it.

Go to https://ground.news/skeptic to get all sides of every story. Subscribe through my link to save 40% off unlimited access.

Here I annoy you by telling you about the threats to science and the people who have made a career of ignoring them. “The War On Science” will be out soon, and Sabine Hossenfelder, Lawrence Krauss, Richard Dawkins, Gad Saad, and many others are excited. I, an intellectual, will perhaps k_m_s.

This video was researched and co-written by Hemant Mehta.

Follow and support Hemant:
friendlyatheist.com.

Hemant’s channel:

Ubiquinone, a metabolite critical to generating energy in cells, has long been thought to be the only mitochondrial electron transport chain carrier in mammals. Although other electron transporters have been identified in bacteria, nematodes and other organisms, evidence of their presence in mammals has remained elusive.

Thanks to new high-resolution mass spectrometry technology, Jessica Spinelli, Ph.D., assistant professor of molecular medicine, has identified rhodoquinone as another fundamental electron transporter in the mammalian electron transport chain. The research was recently published in Cell.

Because rhodoquinone allows mitochondria to function in a low oxygen environment, Dr. Spinelli research may have clinical potential for protecting cells from hypoxia.

A breakthrough by researchers at The University of Manchester sheds light on one of nature’s most elusive forces, with wide-reaching implications for medicine, energy, climate modeling and more. The researchers have developed a method to precisely measure the strength of hydrogen bonds in confined water systems, an advance that could transform our understanding of water’s role in biology, materials science, and technology.

The work, published in Nature Communications, introduces a fundamentally new way to think about one of nature’s most important but difficult-to-quantify interactions.

Hydrogen bonds are the invisible forces that hold water molecules together, giving water its unique properties, from high boiling point to , and enabling critical biological functions such as protein folding and DNA structure. Yet despite their significance, quantifying in complex or confined environments has long been a challenge.

Recent advancements in in-vitro gametogenesis (IVG) suggest that lab-grown eggs and sperm could become viable within the next decade. This technology holds the promise of revolutionizing fertility treatments, particularly for individuals facing infertility and same-sex couples desiring biological children. However, it also raises significant ethical and medical considerations that must be carefully addressed.

The Human Fertilisation and Embryology Authority (HFEA), the UK’s fertility regulator, has reported that the development of lab-grown gametes, known as in-vitro gametogenesis (IVG), may become a practical option within the next decade. This technology involves creating eggs and sperm from reprogrammed skin or stem cells, potentially transforming fertility treatments by removing age-related barriers and enabling same-sex couples to have biological children.

IVG represents a significant advancement in reproductive science. By generating gametes in the laboratory, scientists can overcome challenges associated with traditional fertility treatments. This approach could provide new avenues for individuals with infertility issues and offer same-sex couples the opportunity to have children genetically related to both partners.

Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles — or, at least, of the measuring instruments we use to explore those behaviors — and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, and why, in the mechanical sense (i.e., in a sense that can be answered by describing the internal grinding of gear against gear), the whole thing performs the way it does, how the information that gets fed in at one end is converted into what comes out the other. The question of what kind of a world it describes, however, is controversial; there is very little agreement, among physicists and among philosophers, about what the world is like according to quantum mechanics. Minimally interpreted, the theory describes a set of facts about the way the microscopic world impinges on the macroscopic one, how it affects our measuring instruments, described in everyday language or the language of classical mechanics. Disagreement centers on the question of what a microscopic world, which affects our apparatuses in the prescribed manner, is, or even could be, like intrinsically; or how those apparatuses could themselves be built out of microscopic parts of the sort the theory describes.[1]

That is what an interpretation of the theory would provide: a proper account of what the world is like according to quantum mechanics, intrinsically and from the bottom up. The problems with giving an interpretation (not just a comforting, homey sort of interpretation, i.e., not just an interpretation according to which the world isn’t too different from the familiar world of common sense, but any interpretation at all) are dealt with in other sections of this encyclopedia. Here, we are concerned only with the mathematical heart of the theory, the theory in its capacity as a mathematical machine, and — whatever is true of the rest of it — this part of the theory makes exquisitely good sense.

Astronomers may have uncovered a hidden population of galaxies that could rewrite what we know about the universe’s evolution.

These faint, dusty galaxies were discovered using the deepest far-infrared image ever created, thanks to data from the Herschel Space Observatory. Their collective light might explain a long-standing mystery about the universe’s energy output in the infrared spectrum. If confirmed, these galaxies would challenge current galaxy evolution models and reveal a previously unseen side of the cosmos—one shrouded in dust and only visible in longer wavelengths of light.

Unveiling hidden galaxies in the early universe.

Pancreatic cancer is one of the most aggressive cancers and has one of the lowest survival rates—only 10% after five years. One of the factors contributing to its aggressiveness is its tumor microenvironment, known as the stroma, which makes up the majority of the tumor mass and consists of a network of proteins and different non-tumor cells. Among these, fibroblasts play a key role, helping tumor cells to grow and increasing their resistance to drugs.

Now, a study led by researchers from the Hospital del Mar Research Institute, IIBB-CSIC-IDIBAPS, Mayo Clinic, Instituto de Biología y Medicina Experimental (CONICET, Argentina) and CaixaResearch Institute, has identified a new key factor contributing to this feature of : a previously unknown function of Galectin-1 protein inside the nuclei of fibroblasts.

This discovery, published in the journal PNAS, offers new insights into the role of these cells in the progression of pancreatic cancer.

Extreme cosmic events such as colliding black holes or the explosions of stars can cause ripples in spacetime, so-called gravitational waves. Their discovery opened a new window into the universe. To observe them, ultra-precise detectors are required, but designing them remains a major scientific challenge for humans.

Researchers at the Max Planck Institute for the Science of Light (MPL) have been working on how an artificial intelligence system could explore an unimaginably vast space of possible designs to find entirely new solutions. The results were recently published in the journal Physical Review X.

More than a century ago, Einstein theoretically predicted gravitational waves. They could only be directly detected in 2016 because the development of the necessary detectors was extremely complex.