Toggle light / dark theme

A new climate modeling study published in the journal Science Advances by researchers from the IBS Center for Climate Physics (ICCP) at Pusan National University in South Korea presents a new scenario of how climate and life on our planet would change in response to a potential future strike of a medium-sized (~500 m) asteroid.

The solar system is full of objects with near-Earth orbits. Most of them do not pose any threat to Earth, but some of them have been identified as objects of interest with non-negligible collision probabilities. Among them is the asteroid Bennu with a diameter of about 500 m, which—according to recent studies—has an estimated chance of 1 in 2700 of colliding with Earth in September 2182. This is similar to the probability of flipping a coin 11 times in a row with the same outcome.

To determine the potential impacts of an asteroid strike on our climate system and on and plankton in the ocean, researchers from the ICCP set out to simulate an idealized collision scenario with a medium-sized asteroid using a state-of-the-art climate model.

Can copper be turned into gold? For centuries, alchemists pursued this dream, unaware that such a transformation requires a nuclear reaction. In contrast, graphite—the material found in pencil tips—and diamond are both composed entirely of carbon atoms; the key difference lies in how these atoms are arranged. Converting graphite into diamond requires extreme temperatures and pressures to break and reform chemical bonds, making the process impractical.

A more feasible transformation, according to Prof. Moshe Ben Shalom, head of the Quantum Layered Matter Group at Tel Aviv University, involves reconfiguring the atomic layers of graphite by shifting them against relatively weak van der Waals forces. This study, led by Prof. Ben Shalom and Ph.D. students Maayan Vizner Stern and Simon Salleh Atri, all from the Raymond & Beverly Sackler School of Physics & Astronomy at Tel Aviv University, was recently published in the journal Nature Review Physics.

While this method won’t create diamonds, if the switching process is fast and efficient enough, it could serve as a tiny electronic memory unit. In this case, the value of these newly engineered “polytype” materials could surpass that of both diamonds and gold.

Researchers have made a significant step in the study of a new class of high-temperature superconductors: creating superconductors that work at room pressure. That advance lays the groundwork for deeper exploration of these materials, bringing us closer to real-world applications such as lossless power grids and advanced quantum technologies.

Superconductivity, the ability of certain materials to conduct electricity with zero resistance, typically occurs at extremely low temperatures, or in some cases, under high pressures. For decades, researchers have focused on a class of materials called cuprates, known for their ability to achieve superconductivity at relatively high temperatures.

About five years ago, a team of researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University discovered superconductivity in nickelates, materials chemically similar to cuprates—and last summer, another group of researchers reported superconductivity in a new class of nickel oxides at temperatures comparable to cuprates.

The study of ‘starquakes’ (like earthquakes, but in stars) promises to give us important new insights into the properties of neutron stars (the collapsed remnants of massive stars), according to new research led by the University of Bath in the UK.

Such explorations have the potential to challenge our current approaches to studying , with important impacts for the future of both nuclear physics and astronomy. Longer term, there may also be implications in the fields of health, security and energy.

The value of studying asteroseismology—as these vibrations and flares are known—has emerged from research carried out by an international team of physicists that includes Dr. David Tsang and Dr. Duncan Neill from the Department of Physics at Bath, along with colleagues from Texas A&M and the University of Ohio.

In a milestone that brings quantum computing tangibly closer to large-scale practical use, scientists at Oxford University Physics have demonstrated the first instance of distributed quantum computing.

Using a photonic network interface, they successfully linked two separate quantum processors to form a single, fully connected quantum computer, paving the way to tackling computational challenges previously out of reach. The results were published on 5 Feb in Nature.

The breakthrough addresses quantum’s ‘scalability problem’: a quantum computer powerful enough to be industry-disrupting would have to be capable of processing millions of qubits. Packing all these processors in a single device, however, would require a machine of an immense size.

Collaboration can be a beautiful thing, especially when people work together to create something new. Take, for example, a longstanding collaboration between Arka Majumdar, a University of Washington (UW) professor of electrical and computer engineering and physics, and Felix Heide, an assistant professor of computer science at Princeton University.

Together, they and their students have produced some eye-popping research, including shrinking a camera down to the size of a grain of salt while still capturing crisp, clear images.

Now, the pair is building on this work, publishing a paper in Science Advances that describes a new kind of compact camera engineered for computer vision—a type of artificial intelligence that allows computers to recognize objects in images and video.

Superconducting materials are similar to the carpool lane in a congested interstate. Like commuters who ride together, electrons that pair up can bypass the regular traffic, moving through the material with zero friction.

But just as with carpools, how easily can flow depends on a number of conditions, including the density of pairs that are moving through the material. This “superfluid stiffness,” or the ease with which a current of electron pairs can flow, is a key measure of a material’s superconductivity.

Physicists at MIT and Harvard University have now directly measured superfluid stiffness for the first time in “magic-angle” graphene—materials that are made from two or more atomically thin sheets of graphene twisted with respect to each other at just the right angle to enable a host of exceptional properties, including unconventional superconductivity.

New research shows that meteoroid impacts on Mars.

Mars is the second smallest planet in our solar system and the fourth planet from the sun. It is a dusty, cold, desert world with a very thin atmosphere. Iron oxide is prevalent in Mars’ surface resulting in its reddish color and its nickname “The Red Planet.” Mars’ name comes from the Roman god of war.

Researchers have discovered a method to induce chirality in non-chiral materials using terahertz.

Terahertz radiation refers to the electromagnetic waves that occupy the frequency range between microwaves and infrared light, typically from about 0.1 to 10 terahertz (THz). This region of the electromagnetic spectrum is notable for its potential applications across a wide variety of fields, including imaging, telecommunications, and spectroscopy. Terahertz waves can penetrate non-conducting materials such as clothing, paper, and wood, making them particularly useful for security screening and non-destructive testing. In spectroscopy, they can be used to study the molecular composition of substances, as many molecules exhibit unique absorption signatures in the terahertz range.

Scientists are using tiny QR codes to track honey bee movements and gather groundbreaking insights into their foraging habits.

By monitoring thousands of bees, researchers have discovered that while most trips outside the hive are brief, some bees venture out for hours. This technology could revolutionize organic beekeeping by refining foraging range estimates and improving certification standards.