Nothing can go faster than the speed of light in a vacuum. But particles in our Universe can’t even go that fast.
Here at LEAF, we engage in a wide range of activities in support of the development of rejuvenation biotechnology in order to end age-related diseases. We report the latest news in aging research, attend conferences and give talks, educate, advocate, and fundraise for research projects on Lifespan.io; recently, we implemented the Longevity Investor Network in order to bring startup companies and investors together.
The Longevity Investor Network
The Longevity Investor Network is a group of investors who meet every month and invite young biotech companies working on aging to pitch their ideas. A successful pitch can often mean funding for a new startup company, helping to get its product developed and into clinical trials.
It is important to know why a program does what it does. This is not a mystery, technology is a tool and that tool is only as good as the human who created it.
You always have to know why a program, makes the decisions that it makes. No program or Algorithm will be perfect, that is the main issue that Lisa Haven brings forward. You also have to make sure of the reason for the error whether it is innocent or intentional or even criminal.
That is the problem when you blindly allow technology to rule the day. Anyone from an old-school management upbringing will tell you, never to allow technology to govern your decisions on its own. You always have to know why, where, and how on your decisions.
Six years ago, the Voyager 1 spacecraft informed scientists that it had become the first man-made object to enter interstellar space. Now, Voyager 2 has begun to return signs that its own exit from the Solar System could be coming soon.
Two of Voyager 2’s instruments have measured an increase in the number of high-energy particles called cosmic rays hitting the spacecraft, according to a NASA release. Scientists think that the heliosphere, the region of particles and magnetic fields under the Sun’s influence, blocks some cosmic rays. An increase in their rate means that the probe could be nearing the heliopause, the heliosphere’s outer boundary.
Superconducting quantum microwave circuits can function as qubits, the building blocks of a future quantum computer. A critical component of these circuits, the Josephson junction, is typically made using aluminium oxide. Researchers in the Quantum Nanoscience department at the Delft University of Technology have now successfully incorporated a graphene Josephson junction into a superconducting microwave circuit. Their work provides new insight into the interaction of superconductivity and graphene and its possibilities as a material for quantum technologies.
The essential building block of a quantum computer is the quantum bit, or qubit. Unlike regular bits, which can either be one or zero, qubits can be one, zero or a superposition of both these states. This last possibility, that bits can be in a superposition of two states at the same time, allows quantum computers to work in ways not possible with classical computers. The implications are profound: Quantum computers will be able to solve problems that will take a regular computer longer than the age of the universe to solve.
There are many ways to create qubits. One of the tried and tested methods is by using superconducting microwave circuits. These circuits can be engineered in such a way that they behave as harmonic oscillators “If we put a charge on one side, it will go through the inductor and oscillate back and forth,” said Professor Gary Steele. “We make our qubits out of the different states of this charge bouncing back and forth.”
Scientists found out that nonclassical monocites can become senescent.
Scientists from the A*STAR Singapore Immunology Network have discovered that immune cells called nonclassical monocytes undergo cellular senescence, contradicting what was previously thought of them [1].
Abstract
Human primary monocytes comprise a heterogeneous population that can be classified into three subsets based on CD14 and CD16 expression: classical (CD14high/CD16−), intermediate (CD14high/CD16+), and non-classical (CD14low/CD16+). The non-classical monocytes are the most pro-inflammatory in response to TLR stimulation in vitro, yet they express a remarkably high basal level of miR-146a, a microRNA known to negatively regulate the TLR pathway. This concurrence of a pro-inflammatory status and a high miR-146a level has been associated with cellular senescence in other cell types. Hence, we assessed the three monocyte subsets for evidence of senescence, including proliferative status, telomere length, cellular ROS levels, and mitochondrial membrane potential. Indeed, the non-classical subset exhibited the clearest hallmarks of senescence, followed by the intermediate and then the classical subset. In addition, the non-classical subset secreted pro-inflammatory cytokines basally in vitro.