Toggle light / dark theme

When stars reach the end of their lifespan, many undergo gravitational collapse and explode into a supernova, In some cases, they collapse to become black holes and release a tremendous amount of energy in a short amount of time. These are what is known as gamma-ray bursts (GRBs), and they are one of the most powerful events in the known Universe.

Recently, an international team of astronomers was able to capture an image of a newly-discovered triple star system surrounded by a “pinwheel” of dust. This system, nicknamed “Apep”, is located roughly 8,000 light years from Earth and destined to become a long-duration GRB. In addition, it is the first of its kind to be discovered in our galaxy.

The study which describes the team’s findings was recently published in the scientific journal Nature. The team was led by Joseph R. Callingham, a postdoctoral fellow from the Netherlands Institute for Radio Astronomy (ASTRON), and included members from the Sydney Institute for Astronomy (SIfA), the Royal Observatory Edinburgh, the University of Sheffield and the University of New South Wales.

Read more

Researchers from all corners of medical science are hoping to harness advanced hydrogels to help repair damaged hearts, regrow brain tissues, or quickly shut down bleeding wounds, to name just a few examples. Scientists in Switzerland have now developed a new form of the material they say has unparalleled adhesive properties, a characteristic that could prove particularly useful in trying to repair cartilage and meniscus.

Read more

DOST-Philippines Undersecretary for research and development Rowena Guevara had recognized that to promote wider interest on the study and use of space technologies in the country, they have to get more academe-based engineers into the program.


The Department of Science and Technology (DOST) will get academe-based engineers outside of the University of the Philippine-Diliman to join the country’s microsatellite building program. by Rainier Allan Ronda.

Read more

Researchers from Chalmers University of Technology, Sweden, have discovered how our bones grow at an atomic level, showing how an unstructured mass orders itself into a perfectly arranged bone structure. The discovery offers new insights, which could yield improved new implants, as well as increasing our knowledge of bone diseases such as osteoporosis.

The bones in our body grow through several stages, with atoms and molecules joining together, and those bigger groupings joining together in turn. One in the growth process is when molecules crystallise, which means that they transform from an amorphous mass into an ordered structure. Many stages of this transformation were previously a mystery, but now, through a project looking at an imitation of how our bones are built, the researchers have been able to follow this crystallisation process at an atomic level. Their are now published in the scientific journal Nature Communications.

“A wonderful thing with this project is that it demonstrates how applied and fundamental research go hand in hand. Our project was originally focused on the creation of an artificial biomaterial, but the material turned out to be a great tool to study bone building processes. We first imitated nature, by creating an artificial copy. Then, we used that copy to go back and study nature,” says Martin Andersson, Professor in Materials Chemistry at Chalmers, and leader of the study.

Read more