Toggle light / dark theme

Three new encryption algorithms to bolster global cybersecurity efforts against future attacks using quantum technologies were published today by the National Institute of Standards and Technology (NIST), a division of the U.S. Department of Commerce. The new standards are designed for two tasks: general encryption and digital signatures.

These new standards are the culmination of an eight-year effort from the agency to tap the best minds in cybersecurity to devise the next generation of cryptography strong enough to withstand quantum computers. Experts expect quantum computers capable of breaking current current cryptographic algorithms within a decade. The new standards, the first released by NIST’s post-quantum cryptography (PQC) standardization project, are published on the department’s website. The documents contain the algorithms’ computer code, instructions for how to implement them in products and in encryption systems, and use cases for each.

New research from the University of Massachusetts Amherst shows that programming robots to create their own teams and voluntarily wait for their teammates results in faster task completion, with the potential to improve manufacturing, agriculture and warehouse automation. The study is published in 2024 IEEE International Conference on Robotics and Automation (ICRA).

This research was recognized as a finalist for Best Paper Award on Multi-Robot Systems at the IEEE International Conference on Robotics and Automation 2024.

“There’s a long history of debate on whether we want to build a single, powerful humanoid robot that can do all the jobs, or we have a team of robots that can collaborate,” says one of the study authors, Hao Zhang, associate professor at the UMass Amherst Manning College of Information and Computer Sciences and director of the Human-Centered Robotics Lab.

Variable renewables cannot, by themselves, reliably supply all of our electricity and heat. But we can change our demand for energy supply through targeted energy efficiency and smart demand management.

The ISP focuses on electricity supply, so it does not effectively address gas-related factors such as the impact of efficient building electrification on electricity demand. Assumptions that electrification will dramatically increase electricity demand are risky.

A lot of gas technologies are far less efficient than many believe, and deliver heat at temperatures higher than processes actually require. And gas equipment can use significant amounts of electricity for fans, pumps, controls and other functions.

Wireless internet supports the daily activities of countless people worldwide, ranging from their professional communications to internet browsing and the streaming of movies or TV series. This spiking demand for wireless internet access goes hand in hand with greater power consumption, which in turn contributes to carbon emissions worldwide.

Future wireless networks should be able to support the high computational demands of many modern applications and internet services, while limiting power consumption. Some researchers have thus been developing energy efficient techniques supporting between devices and the sharing of media or other information online.

One of these solutions is known as communication (VLC). This is a method to realize efficient wireless communication using visible light to transmit data, relying on (LEDs) or other artificial light sources.