Toggle light / dark theme

In addition to having access to large colonies of monkeys and other species, animal researchers in China face less public scrutiny than counterparts in the United States and Europe. Ji, who says his primate facility follows international ethical standards for animal care and use, notes that the Chinese public has long supported monkey research to help human health. “Our religion or our culture is different from that of the Western world,” he says. Yet he also recognizes that opinions in China are evolving. Before long, he says, “We’ll have the same situation as the Western world, and people will start to argue about why we’re using a monkey to do an experiment because the monkey is too smart, like human beings.”


This story, one in a series, was supported by the Pulitzer Center.

BEIJING, GUANGZHOU, JIANGMEN, KUNMING, AND SHANGHAI—Early one February morning, researchers harvest six eggs from a female rhesus macaque—one of 4000 monkeys chirping and clucking in a massive outdoor complex of metal cages here at the Yunnan Key Laboratory of Primate Biomedical Research. On today’s agenda at the busy facility, outside Kunming in southwest China: making monkey embryos with a gene mutated so that when the animals are born 5 months later, they will age unusually fast. The researchers first move the eggs to a laboratory bathed in red light to protect the fragile cells. Using high-powered microscopes, they examine the freshly gathered eggs and prepare to inject a single rhesus sperm into each one. If all goes well, the team will introduce the genome editor CRISPR before the resulting embryo begins to grow—early enough for the mutation for aging to show up in all cells of any offspring.

But as often happens when eggs are retrieved, all does not go well. Only one egg in this morning’s batch is mature enough to fertilize. “We were a little unlucky today,” says Niu Yuyu, who with facility director Ji Weizhi runs the gene-editing research. The group can afford a little bad luck, though. Through a combination of patience, ingenuity, and enormous animal resources, the team has already used CRISPR to create an astonishing range of genome-edited monkeys to serve as models for studying human diseases.

We tend to think of AI as a monolithic entity, but it has actually developed along multiple branches. One of the main branches involves performing traditional calculations but feeding the results into another layer that takes input from multiple calculations and weighs them before performing its calculations and forwarding those on. Another branch involves mimicking the behavior of traditional neurons: many small units communicating in bursts of activity called spikes, and keeping track of the history of past activity.

Each of these, in turn, has different branches based on the structure of its layers and communications networks, types of calculations performed, and so on. Rather than being able to act in a manner we would recognize as intelligent, many of these are very good at specialized problems, like pattern recognition or playing poker. And processors that are meant to accelerate the performance of the software can typically only improve a subset of them.

That last division may have come to an end with the development of Tianjic by a large team of researchers primarily based in China. Tianjic is engineered so that its individual processing units can switch from spiking communications back to binary and perform a large range of calculations, in almost all cases faster and more efficiently than a GPU can. To demonstrate the chip’s abilities, the researchers threw together a self-driving bicycle that ran three different AI algorithms on a single chip simultaneously.

The Universe is thought to have popped into existence some 13.8 billion years ago when an infinitesimal point expanded billions of lightyears across in just a fraction of a second. The Big Bang theory has stood for the best part of 100 years after Belgian physicist Georges Lemaître first proposed in 1927 the expansion of the Universe could be traced back to a single point. However, the well-accepted model is now under the microscope after a team of researchers found a star which appears to be older than the cosmos.

Today, I was co-host of an online cryptocurrency symposium—taking questions from hundreds of visitors. A common question goes something like this:

Can Bitcoin be used in person—or
is it just for internet commerce?

Our panel had a moderator, and also an off-screen video director. As I cleared my throat in preparation to offer a response, a voice in my ear reminded me that it was not my turn. The director explained that another panelist would reply. It was a highly regarded analyst and educator in Australia. Realizing that that she was calling the shots, I deferred.

I was shocked as I listened to a far off colleague suggest that Bitcoin is not useful for in-person payments. I wonder how he explains this to the grocers, tailors, lawyers, theme parks and thousands of retailers who save millions of dollars each year by accepting bitcoin—all without risk of volatility and even if they demand to instantly convert sales revenue into Fiat currency.*

Of course it can be used in person, Numb-nut!” (I kept the thought to myself. I know better than to criticize another speaker).