Toggle light / dark theme

The human body has powerful healing abilities. But treating brain disorders is no easy task, as brain cells—neurons—have limited ability to regenerate. Nonetheless, stem cells are a form of natural backup, a vestige of our days as still-developing embryos.

The difficulty is that with age, neural stem cells ‘fall asleep’ and become harder to wake up when repairs are needed. Despite efforts to harness these cells to treat neurological damage, scientists have until recently been unsuccessful in decoding the underlying ‘sleep’ mechanism.

Now, researchers at Kyoto University studying brain chemistry in mice have revealed the ebb and flow of gene expression that may wake neural stem cells from their slumber. These findings, which may also apply to stem cells elsewhere in the body, were recently published in the journal Genes & Development.

Read more

People will stop complaining about EV range the minute fast charging is a reality, and new startup Piëch reckons it’s got the goods to deliver an 80 percent charge on a 311-mile (500 km) range battery in four minutes, 40 seconds, which is vastly quicker than anything else on the market. Why not just launch the battery, then?

Read more

As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell. Researchers at the University of Basel in Switzerland exploited this critical phase, known as an epithelial-mesenchymal transition (EMT), to coax breast cancer cells in mice to turn into harmless fat cells. The proof-of-concept study appears January 14 in the journal Cancer Cell.

“The breast cancer cells that underwent an EMT not only differentiated into fat cells, but also completely stopped proliferating,” says first author Gerhard Christofori, professor of biochemistry at the University of Basel. What’s more, the did not metastasize. “As far as we can tell from long-term culture experiments, the cancer cells-turned-fat cells remain fat cells and do not revert back to breast cancer cells,” he says.

Epithelial cells undergoing EMT regress from terminally differentiated cells to a more immature state reminiscent of stem cells. EMT is essential for embryonic development, during which stem cells differentiate into a variety of cell types throughout the body, and for tissue regeneration such as wound healing. EMT and the inverse process, mesenchymal-epithelial transition (MET), are implicated in cancer’s ability to metastasize.

Read more

We’d like to draw attention to an initiative whose objectives are close to our own: the German Party for Health Research (GPHR, Partei für Gesundheitsforschung in German). Founded in January 2015 by three biochemists and one actor, the GPHR is rather unique in that it is a single-issue party: its only concern is the creation of effective therapies to treat and prevent the pathologies of old age.

Since its creation, the party has participated in five elections; one of its biggest successes was the Berlin state elections in September 2016, where it received 0.5% of the secondary votes despite being still a rather unknown party. Slowly but steadily, the party has enjoyed an increase in voter support over the years, doing even better than the well-known Pirate Party in one election district during the 2017 federal elections. Currently, the party counts over 250 members, a very heterogeneous group of young and old people with different backgrounds.

The GPHR was founded because the founding members, including biochemist Felix Werth, wanted to give people a new way to support research against age-related diseases; not everyone is willing or capable to help the cause in traditional ways, such as by donating money or time to research or advocacy organizations, while a political party offers simpler yet effective ways to help, such as voting for the party, signing for its participation in elections, or even joining for free as a member.

Read more

Of all the science-fiction-sounding names that have come to fruition in recent years, perhaps none is as mysterious or seemingly fictitious as time crystals. The name evokes something between Back to the Future and Donnie Darko, and the reality is perhaps crazier than either.

Two separate groups of scientists recently reported that they observed time crystals, which lends credence to the idea that this theoretical state of matter is something humans can actually create and observe. And indeed, time crystals can be grown in a child’s bedroom.

However, it requires nuclear sensors and lasers to help time crystals reach their full potential and then measure and observe them. This combination of dramatic scientific terms and shockingly simple objects is a great analogy for time crystals as a whole.

Read more