Menu

Blog

Page 932

Jul 15, 2024

Faster Than Light: New Dark Matter Findings Challenge Classical Physics

Posted by in categories: cosmology, particle physics, quantum physics, space travel

Dive into the world of tachyons, the elusive particles that might travel faster than light and hold the key to understanding dark matter and the universe’s expansion. Join us as we explore groundbreaking research that challenges our deepest physics laws and hints at a universe far stranger than we ever imagined. Don’t miss out on this thrilling cosmic journey!

Chapters:
00:00 Introduction.
00:39 Racing Beyond Light.
03:26 The Tachyon Universe Model.
05:57 Beyond Cosmology: Tachyons’ Broader Impact.
08:31 Outro.
08:44 Enjoy.

Continue reading “Faster Than Light: New Dark Matter Findings Challenge Classical Physics” »

Jul 15, 2024

Learning to Move, Learning to Play, Learning to Animate

Posted by in categories: materials, robotics/AI

Is a cross-disciplinary multimedia performance piece featuring self-developed found material robots, real-time AI generation, motion tracking, audio spatialization, and bio-feedback-based audio synthesis. The immersive piece challenges the human-centric perspective and invites audiences to contemplate the coexistence of technology, nature, and us.

Credits (in alphabetical order):
Co-Directors: Mingyong Cheng, Sophia Sun, Han Zhang.
Performers: Yuemeng Gu, Erika Roos.
Robotic Engineer: Sophia Sun.
Visual Artist: Mingyong Cheng.
Sound Designer: Han Zhang.
Lighting Engineer: Zehao Wang, Han Zhang.
Video Editor: Yuemeng Gu.
Post Production Coordinator: Mingyong Cheng.
Technical \& Installation Support: Yifan Guo, Ke Li, Zehao Wang, Zetao Yu.

Continue reading “Learning to Move, Learning to Play, Learning to Animate” »

Jul 15, 2024

Elon Musk Says SpaceX Making ‘Important’ Design Changes To Starship Ahead Of Its Fifth Test Flight

Posted by in categories: Elon Musk, space travel

Posted In: NewsSPACETechElon MuskmobilityStarship.

Jul 15, 2024

Tesla’s Megapack Technology Selected for Australia’s Largest Four-Hour Battery Storage System

Posted by in categories: energy, finance, sustainability

Tesla Energy secured a $375 million Megapack contract in Australia. The new Tesla Megapack contract will help build a 415 MW/1660 MWh battery Down Under, one of the largest four-hour batteries in the world.

Tesla Energy will supply Megapacks to Akaysha Energy’s Orana Battery Energy Storage System (BESS). The Orana project is located in New South Wales within Central West Orana’s Renewable Energy Zone (REZ).

We are very pleased to announce the successful closing of the debt financing of the Orana project as we move into construction on Akaysha’s first four-hour BESS to date. As the largest standalone BESS financing globally, this achievement not only secures the capital for Orana’s construction but also highlights the strong support we have received from both local and international banks, as well as from BlackRock. Their commitment to advancing the energy transition in Australia and internationally has been pivotal to reaching this milestone.

Jul 15, 2024

Research team working on building a DNA hard drive within three years — aims to build a working DNA micro-factory for data archiving

Posted by in categories: biotech/medical, computing

DNA meets spinning rust.

Jul 15, 2024

Chips could harvest their own energy using a newly-created alloy

Posted by in categories: computing, mobile phones, sustainability

Why it matters: Electronic devices, which encompass anything from mobile phones to data centers, are notorious energy hogs. One solution could be to harness their heat directly to create a technique for on-chip energy harvesting. The problem has been that none of the few materials able to do this is compatible with current technology in semiconductor fabrication plants. Now, researchers from across Europe have created a germanium-tin alloy that can convert computer processors’ waste heat back into electricity.

A research collaboration in Europe has created a new alloy of silicon, germanium, and tin that can convert waste heat from computer processors back into electricity. It is a significant breakthrough in the development of materials for on-chip energy harvesting, which could lead to more energy-efficient and sustainable electronic devices. Essentially, by adding tin to germanium, the material’s thermal conductivity has been significantly reduced while still maintaining its electrical properties, making it ideal for thermoelectric applications.

The researchers are from Forschungszentrum Jülich and IHP – Leibniz Institute for High Performance Microelectronics in Germany, the University of Pisa, the University of Bologna in Italy, and the University of Leeds in the UK. Their findings made it onto the cover of the scientific journal ACS Applied Energy Materials.

Jul 15, 2024

Revealing a master controller of development and ageing

Posted by in categories: biotech/medical, life extension

University of Queensland researchers have unlocked crucial molecular secrets of ageing in cells, potentially paving the way to improve quality of life as people age.

The study decoded the process by which genes regulate how people mature as they grow and age, and was led by Dr Christian Nefzger from UQ’s Institute for Molecular Bioscience with key contributions from Dr Ralph Patrick and Dr Marina Naval-Sanchez.

Dr Nefzger said that until now the process of how genes change activity from birth to adulthood and into old age was largely unknown.

Jul 15, 2024

Wirelessly Powered Relay will help bring 5G Technology to Smart Factories

Posted by in categories: internet, robotics/AI

The proposed innovative design leads to unprecedented power conversion efficiency and improved versatility. A recently developed wirelessly powered 5G relay could accelerate the development of smart factories, report scientists from Tokyo Tech. By adopting a lower operating frequency for wireless power transfer, the proposed relay design solves many of the current limitations, including range and efficiency. In turn, this allows for a more versatile and widespread arrangement of sensors and transceivers in industrial settings.

One of the hallmarks of the Information Age is the transformation of industries towards a greater flow of information. This can be readily seen in high-tech factories and warehouses, where wireless sensors and transceivers are installed in robots, production machinery, and automatic vehicles. In many cases, 5G networks are used to orchestrate operations and communications between these devices.

To avoid relying on cumbersome wired power sources, sensors and transceivers can be energized remotely via wireless power transfer (WPT). However, one problem with conventional WPT designs is that they operate at 24 GHz. At such high frequencies, transmission beams must be extremely narrow to avoid energy losses. Moreover, power can only be transmitted if there is a clear line of sight between the WPT system and the target device. Since 5G relays are often used to extend the range of 5G base stations, WPT needs to reach even further, which is yet another challenge for 24 GHz systems.

Jul 15, 2024

Treating the Gut-Brain Connection with B Vitamins to Treat Parkinson’s Disease

Posted by in categories: biotech/medical, neuroscience

A study led by Nagoya University Graduate School of Medicine in Japan has revealed a link between gut microbiota and Parkinson’s disease (PD). The researchers found a reduction in the gut bacteria of genes responsible for synthesizing the essential B vitamins B2 and B7. They also identified a relationship between the lack of these genes and low levels of agents that help maintain the integrity of the intestinal barrier. This barrier prevents toxins from entering the bloodstream, which causes the inflammation seen in PD. Their findings, published in npj Parkinson’s Disease, suggest that treatment with B vitamins to address these deficiencies can be used to treat PD.

PD is characterized by a variety of physical symptoms that hinder daily activities and mobility, such as shaking, slow movement, stiffness, and balance problems. While the frequency of PD may vary between different populations, it is estimated to affect approximately 1–2% of individuals aged 55 years or older.

Various physiological processes are heavily influenced by the microorganisms found in the gut, which are collectively known as gut microbiota. In ideal conditions, gut microbiota produce SCFAs and polyamines, which maintain the intestinal barrier that prevents toxins entering the bloodstream. Toxins in the blood can be carried to the brain where they cause inflammation and affect neurotransmission processes that are critical for maintaining mental health.

Jul 15, 2024

Astronomers see a Massive Black Hole Awaken in Real Time

Posted by in categories: cosmology, physics

In late 2019 the previously unremarkable galaxy SDSS1335+0728 suddenly started shining brighter than ever before. To understand why, astronomers have used data from several space and ground-based observatories, including the European Southern Observatory’s Very Large Telescope (ESO’s VLT), to track how the galaxy’s @brightness has varied. In a study out today, they conclude that they are witnessing changes never seen before in a galaxy – likely the result of the sudden awakening of the massive black hole at its core.

“Imagine you’ve been observing a distant galaxy for years, and it always seemed calm and inactive,” says Paula Sánchez Sáez, an astronomer at ESO in Germany and lead author of the study accepted for publication in Astronomy & Astrophysics. “Suddenly, its [core] starts showing dramatic changes in brightness, unlike any typical events we’ve seen before.” This is what happened to SDSS1335+0728, which is now classified as having an ‘active galactic nucleus’ (AGN) — a bright compact region powered by a massive black hole — after it brightened dramatically in December 2019 [1].

Some phenomena, like supernova explosions or tidal disruption events — when a star gets too close to a black hole and is torn apart — can make galaxies suddenly light up. But these brightness variations typically last only a few dozen or, at most, a few hundreds of days. SDSS1335+0728 is still growing brighter today, more than four years after it was first seen to ‘switch on’. Moreover, the variations detected in the galaxy, which is located 300 million light-years away in the constellation Virgo, are unlike any seen before, pointing astronomers towards a different explanation.

Page 932 of 12,385First929930931932933934935936Last