Toggle light / dark theme

Circa 2015


I’m sure many of you have experienced that sinking feeling when you’re running out to your car to drive to work only to discover a flat tire. The cause: usually a nail your drove over the night before. It’s 2015, tires shouldn’t suffer punctures anymore, right? Well, they may not for much longer if this prototype tire from Japan makes it to mass production.

The tire is called Coreseal and it has been developed by Japanese company Sumitomo Rubber Industries Ltd. It looks like any other tire fitted on vehicles today, but it has one big advantage. If you drive over a nail and cause a puncture, the tire won’t deflate. In fact, it will repair itself and you’ll likely never know it happened.

sumitomo_tire_03

After 20 years of dedicated research, scientists have cracked the chemical code of an incredibly complex ‘anti-tumour antibiotic’ known to be highly effective against cancer cells as well as drug-resistant bacteria, and have reproduced it synthetically in the lab for the first time.

This major breakthrough and world-first could hail a new era in the design and production of new antibiotics and anticancer agents.

The ‘super substance’—kedarcidin—was discovered in its natural form by a pharmaceutical company when they extracted it from a soil sample in India almost 30-years-ago. Soil is the natural source of all antibiotics developed since the 1940s but in order for them to be developed as potential drug treatments they must be produced via .

Read more

Researchers from Osaka University have developed a technique for improving accuracy of laser beam shaping and wavefront obtained by conventional methods with no additional cost by optimizing virtual phase grating. The results of their research were published in Scientific Reports.

A high quality square flattop is in demand for various fields, such as uniform laser processing and medicine, as well as ultrahigh intensity laser applications for accelerators and nuclear fusion. Beam is key to realizing the laser’s potential abilities and effects. However, since beam shape and wavefront vary by laser, beam shaping is essential for producing the desired shapes to respond to various needs.

Static and adaptive beam shaping methods have been developed for various applications. With Diffractive Optical Element (DOE) as a static method, edge steepness and flatness are low and wavefront becomes deformed after shaping. (Figure 1 (a)) In addition, computer-generated hologram (CGH) as a typical adaptive method has the same difficulties.

Read more

Two years ago a team of scientists visited Costa Rica’s subduction zone, where the ocean floor sinks beneath the continent and volcanoes tower above the surface. They wanted to find out if microbes can affect the cycle of carbon moving from Earth’s surface into the deep interior. According to their new study in Nature, the answer is affirmatively—yes they can.

This groundbreaking study shows that microbes consume and—crucially—help trap a small amount of sinking carbon in this zone. This finding has important implications for understanding Earth’s fundamental processes and for revealing how nature can potentially help mitigate climate change.

At a subduction zone there is communication between Earth’s surface and interior. Two plates collide and the denser plate sinks, transporting material from the surface into Earth’s interior. Showing that the microbes at the near-surface are playing a fundamental role in how carbon and other elements are being locked up into the crust provides a profound new understanding of Earth processes and helps researchers model how Earth’s interior may develop over time.

Read more

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring rather antithetical properties, has been long sought in . However, after decades of theoretical and experimental efforts, an unambiguous proof of supersolidity in these systems is still missing. Two research teams led by Francesca Ferlaino, one at the Institute for Experimental Physics at the University of Innsbruck and one at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, now report on the observation of hallmarks of this exotic state in ultracold atomic gases.

While so far most work has focused on helium, researchers have recently turned to atomic gases—in particular, those with strong dipolar interactions. The team of Francesca Ferlaino has been investigating quantum gases made of atoms with a strong dipolar character for a long time. “Recent experiments have revealed that such gases exhibit fundamental similarities with superfluid helium,” says Lauriane Chomaz, referring to experimental achievements in Innsbruck and in Stuttgart over the last few years. “These features lay the groundwork for reaching a state where the several tens of thousands of particles of the gas spontaneously organize in a self-determined crystalline structure while sharing the same macroscopic wavefunction—hallmarks of supersolidity.”

Read more

While studying the chemical reactions that occur in the flow of gases around a vehicle moving at hypersonic speeds, researchers at the University of Illinois used a less-is-more method to gain greater understanding of the role of chemical reactions in modifying unsteady flows that occur in the hypersonic flow around a double-wedge shape.

“We reduced the pressure by a factor of eight, which is something experimentalists couldn’t do,” said Deborah Levin, researcher in the Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign. “In an actual chamber, they tried to reduce the pressure but couldn’t reduce it that much because the apparatuses are designed to operate within a certain region. They couldn’t operate it if the pressure was too low. When we reduced the pressure in the simulation, we found that the instabilities in the calmed down. We still had a lot of the kind of vortical structure—separation bubbles and swirls—they were still there. But the data were more tractable, more understandable in terms of their time variation.”

Levin conducted the research along with her, then, doctoral student Ozgur Tumuklu, and Vassilis Theofilis from the University of Liverpool.

Read more

An international research team led by The Australian National University (ANU) has made a new type of silicon that better uses sunlight and promises to cut the cost of solar technology.

The researchers say their world-first invention could help reduce the costs of renewable electricity below that of existing coal power stations, as well as lead to more efficient solar cells.

Senior researcher ANU Professor Jodie Bradby said was used as the raw material for solar cells because of its abundance, low-cost and non-toxicity.

Read more

Visible satellite imagery from NASA’s Aqua satellite revealed the recently formed Tropical Storm Lorna was getting organized in the Southeastern Indian Ocean.

Lorna developed into a on April 23 at 11 a.m. EDT (1500 UTC) and was named Tropical Cyclone 25S. On April 24, it received the name Lorna. At 4:15 a.m. EDT (0815 UTC) on April 24, the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard Aqua captured a visible image of Lorna. The Joint Typhoon Warning Center or JTWC forecasters noted “persistent deep convection to the west of, and obscuring, the low level circulation center.”

By 11 a.m. EDT (1500 UTC) on April 24, Tropical Storm Lorna had maximum sustained winds near 40 knots (46 mph/74 kph). Lorna was centered near 10.9 degrees south latitude and 84.6 degrees east longitude, approximately 743 nautical miles southeast of Diego Garcia. Lorna has tracked to the east-southeast.

Read more