Toggle light / dark theme

Ovarian cancer is usually diagnosed only after it has reached an advanced stage, with many tumors spread throughout the abdomen. Most patients undergo surgery to remove as many of these tumors as possible, but because some are so small and widespread, it is difficult to eradicate all of them.

Researchers at MIT, working with surgeons and oncologists at Massachusetts General Hospital (MGH), have now developed a way to improve the accuracy of this , called debulking. Using a novel fluorescence imaging system, they were able to find and remove tumors as small as 0.3 millimeters—smaller than a poppy seed—during surgery in mice. Mice that underwent this type of image-guided surgery survived 40 percent longer than those who had tumors removed without the guided system.

“What’s nice about this system is that it allows for real-time information about the size, depth, and distribution of tumors,” says Angela Belcher, the James Mason Crafts Professor of Biological Engineering and Materials Science at MIT, a member of the Koch Institute for Integrative Cancer Research, and the recently appointed head of MIT’s Department of Biological Engineering.

Read more

Holograms are a staple in science fiction, but creating ones detailed enough to have serious applications in the real world has proved difficult. While scientists have been slowly pushing the field of holographic projection forward, they haven’t been able to overcome a problem called cross-talk. However, in a recent paper published in Nature, they have been able to manipulate the shape of light to overcome this, thus allowing them to produce 3D holograms that are orders of magnitude clearer, larger, and more detailed.

What Are Holograms?

Simple holograms are 2D surfaces that produce the illusion of a 3D object when light is shined through it.

Read more

Bioengineers at Boston Children’s Hospital report the first demonstration of a robot able to navigate autonomously inside the body. In an animal model of cardiac valve repair, the team programmed a robotic catheter to find its way along the walls of a beating, blood-filled heart to a leaky valve—without a surgeon’s guidance. They report their work today in Science Robotics.

Surgeons have used robots operated by joysticks for more than a decade, and teams have shown that tiny robots can be steered through the body by external forces such as magnetism. However, senior investigator Pierre Dupont, Ph.D., chief of Pediatric Cardiac Bioengineering at Boston Children’s, says that to his knowledge, this is the first report of the equivalent of a self-driving car navigating to a desired destination inside the body.

Dupont envisions assisting surgeons in complex operations, reducing fatigue and freeing surgeons to focus on the most difficult maneuvers, improving outcomes.

Read more

A special focus on rogue proteins may hold future promise in stopping the progression of nerve cell destruction in people who have amyotrophic lateral sclerosis (ALS) or frontotemporal dementia.

ALS, a rare but devastating disorder that’s also known as Lou Gehrig’s disease, attacks the body’s , resulting in progressive muscle weakness as the neurons degenerate over time. There is no cure. People with ALS eventually lose their strength and the ability to move their arms, legs and body.

About a third of those with ALS also develop frontotemporal dementia (FTD), a destruction of neurons in the brain that causes profound personality changes and disability. The two diseases are similar in both pathology and genetics. FTD tends to affect people earlier than Alzheimer’s disease, the most common type of dementia.

Read more

By breaking with conventionality, University of Otago physicists have opened up new research and technology opportunities involving the basic building block of the world—atoms.

In a study, just published in Nature Communications, researchers put one atom inside each of two before moving them together until they started to interact with each other.

Co-author Associate Professor Mikkel F. Andersen, of the Department of Physics, says this allows the atoms to exchange properties in a way which could be “very useful” for future quantum technologies.

Read more

I suspect that if you asked an engineer at Intel about quantum computing, they probably wouldn’t want to know about it unless the chips could be fabricated using standard fabrication technology. Using standard processes means using electrons as the basis for quantum computing.

Electrons are lovely in many respects, but they are rather extroverted. It doesn’t matter what you do, they will run off and play with the neighbors. The constantly interacting electron does not look after its quantum state, so quantum information is rapidly lost, making processing really difficult. This makes the achievement of a quantum non-demolition measurement in an electron system rather remarkable.

Read more

Using human cancer cells, tumor and blood samples from cancer patients, researchers at Johns Hopkins Medicine have uncovered the role of a neurotransmitter in the spread of aggressive cancers. Neurotransmitters are chemical “messengers” that transmit impulses from neurons to other target cells.

The work, described in the April 9 issue of the journal Cell Reports, found that this neurotransmitter, called N-acetyl-aspartyl-glutamate (NAAG) NAAG is more abundant in cancers with a tendency to grow and spread rapidly—or so-called higher grade cancers—than in lower grade tumors, making it a potential marker for tumor progression or regression during cancer therapy, the researchers say. The experiments also demonstrated that NAAG is a source of glutamate, a chemical that cancer cells use as building blocks to survive, in tumors that express an enzyme called glutamate carboxypeptidase II (GCPII). The group also discovered that stopping the GCPII from being active by using a drug called 2-PMPA to treat human ovarian tumors implanted in ovaries of mice, reduced tumor weights and glutamate concentrations.

Read more

Researchers at Rady Children’s Institute for Genomic Medicine (RCIGM) have utilized a machine-learning process and clinical natural language processing (CNLP) to diagnose rare genetic diseases in record time. This new method is speeding answers to physicians caring for infants in intensive care and opening the door to increased use of genome sequencing as a first-line diagnostic test for babies with cryptic conditions.

“Some people call this , we call it augmented intelligence,” said Stephen Kingsmore, MD, DSc, President and CEO of RCIGM. “Patient care will always begin and end with the doctor. By harnessing the power of technology, we can quickly and accurately determine the root cause of genetic diseases. We rapidly provide this critical information to physicians so they can focus on personalizing care for babies who are struggling to survive.”

A new study documenting the process was published today in the journal Science Translational Medicine. The workflow and research were led by the RCIGM team in collaboration with leading technology and data-science developers —Alexion, Clinithink, Diploid, Fabric Genomics and Illumina.

Read more