Toggle light / dark theme

* Scientists Took an M.R.I. Scan of an Atom * Former NASA Flight Director Gene Kranz Restores Mission Control In Houston * Jeff Hawkins: Thousand Brains Theory of Intelligence

* Google’s robots.txt Parser is Now Open Source * Dear Agile, I’m Tired of Pretending * 4 Ways to Debug your Deep Neural Network

* How 3D printing allows scientists to grow new human hairs * NASA is testing how its new deep-space crew capsule handles a rocket emergency * Fake noise will be added to new electric cars starting today in the EU .

Cancer cells use a bizarre strategy to reproduce in a tumor’s low-energy environment; they mutilate their own mitochondria! Researchers at Cold Spring Harbor Laboratory (CSHL) also know how this occurs, offering a promising new target for pancreatic cancer therapies.

Why would a cell want to destroy its own functioning mitochondria? “It may seem pretty counterintuitive,” admits M.D.-Ph. D. student Brinda Alagesan, a member of Dr. David Tuveson’s lab at CSHL.

According to Alagesan, the easiest way to think about why may do this is to think of the mitochondria as a powerplant. “The mitochondria is the powerhouse of the cell,” she recites, recalling the common grade school lesson. And just like a traditional powerplant, the mitochondria create their own pollution.

For most of their lives, our hematopoietic stem cells (HSCs)—which produce all of our blood and immune cells—are quiet and inactive. But they also are the toughest cells in the blood system, able to survive exposure to levels of radiation or viral infections that kill most other blood cells.

A new study from researchers in Columbia’s Stem Cell Initiative has discovered how HSCs cheat death, which could lead to new therapies for blood cancers and other diseases related to aging and improve stem cell transplantation.

Watch enough movies in which aliens contact humans, and you’ll notice a trend: the people deciding how Earth should respond to the extraterrestrial communications are usually politicians or scientists.

But the UK Seti Research Network (UKSRN) thinks the average person should have a say in how Earth responds if aliens ever decide to say “hello” to humanity.

Researchers have come up with a way we could harvest energy from Earth by turning excess infrared radiation and waste heat into electricity we can use.

The concept involves the strange physics of quantum tunnelling, and key to the idea is a specially designed antenna that can detect waste or infrared heat as high-frequency electromagnetic waves, transforming these quadrillionth-of-a-second wave signals into a direct charge.

There’s actually a lot of energy going to waste here on Earth – most sunlight that hits the planet gets sucked up by surfaces, the oceans, and our atmosphere.

Circa 2015


For our modern, technologically-advanced society, in which technology has become the solution to a myriad of challenges, energy is critical not only for growth but also, more importantly, survival. The sun is an abundant and practically infinite source of energy, so researchers around the world are racing to create novel approaches to “harvest” clean energy from the sun or transfer that energy to other sources.

This week in the journal Applied Physics Letters, from AIP Publishing, researchers from the University of Waterloo in Canada report a novel design for harvesting based on the “full absorption concept.” This involves the use of metamaterials that can be tailored to produce media that neither reflects nor transmits any power—enabling full absorption of incident waves at a specific range of frequencies and polarizations.

“The growing demand for around the globe is the main factor driving our research,” said Thamer Almoneef, a Ph.D. student. “More than 80 percent of our today comes from burning fossil fuels, which is both harmful to our environment and unsustainable as well. In our group, we’re trying to help solve the energy crisis by improving the efficiency of electromagnetic systems.”