Toggle light / dark theme

A team of physicists has successfully created superconducting properties in materials known for conducting electricity only at their edges, marking a potential leap forward in quantum computing technology.

This achievement, which has eluded researchers for over a decade, was made possible through meticulous control of the experimental conditions.

Quantum Breakthroughs

A groundbreaking study using sub-daily GPS has improved our understanding of early afterslip following earthquakes, offering a more accurate assessment of seismic hazards and enhancing emergency response and preparedness strategies.

A groundbreaking study has revealed new insights into the Earth’s crust’s immediate behavior following earthquakes. Researchers have utilized sub-daily Global Positioning System (GPS) solutions to accurately measure the spatial and temporal evolution of early afterslip following the 2010 Mw 8.8 Maule earthquake. This innovative approach marks a significant advancement in seismic analysis, offering a more precise and rapid depiction of ground deformations, which is essential for assessing seismic hazards and understanding fault line activities.

The aftermath of an earthquake is marked by intricate postseismic adjustments, particularly the elusive early afterslip. Daily seismic monitoring has struggled to capture the rapid and complex ground movements occurring in the critical hours post-quake. The intricacies of these initial activities and their profound implications for seismic hazard assessment highlight an urgent need for more refined and immediate monitoring techniques.

“The moment when we wrote down the terms of this equation and saw that it all clicked together, it felt pretty incredible,” Wordsworth said. “It’s a result that finally shows us how directly the quantum mechanics links to the bigger picture.”

In some ways, he said, the calculation helps us understand climate change better than any computer model. “It just seems to be a fundamentally important thing to be able to say in a field that we can show from basic principles where everything comes from.”

The Okinawa Institute of Science and Technology (OIST) has designed a new type of extreme ultraviolet (EUV) lithography equipment that could significantly reduce the cost to produce 7nm and smaller semiconductors, and thus revolutionize the chip manufacturing supply chain.

According to reports, the EUV equipment’s optical system is greatly simplified while power consumption is reduced by a factor of ten, raising the prospect of much cheaper advanced chip-making machines.

If so, it could mark the end of ASML’s monopoly on EUV lithography, which would have serious implications for semiconductor manufacturers, investors and governments.

The Cygnus spacecraft is filled with nearly 8,200 pounds of supplies, hardware and other critical materials for dozens of scientific and research experiments, according to NASA.

That includes tests for water recovery technology and supplies needed for a process to produce blood and immune stem cells in microgravity. Also included in the payload are materials to study the effects of spaceflight on engineered liver tissue and microorganism DNA, NASA said.