Toggle light / dark theme

The evolving gene-editing technology CRISPR-Cas9 is useful for changing one gene, or maybe a few genes at a time. A team at ETH Zurich has tweaked the technology so they can change 25 different gene sites at once. Instead of using the Cas9 enzyme to do the DNA cutting, though, they used Cas12a. That allowed them to create a long “address list” of gene sites to target, they explained in the journal Nature Methods. They created a DNA molecule called a plasmid to store the list, inserted it in human cells and were able to modify several genes, they reported. (Release)

Chemotherapy and radiation suppress blood stem cells, often for several weeks or even months after cancer treatments are complete. This leaves patients vulnerable to infections and other health problems. Scientists at the University of California, Los Angeles have created a new drug that targets the protein tyrosine phosphatase-sigma (PTP-sigma), which is prevalent on blood stem cells. They showed that blocking the protein in rodent models with the drug, called DJ009, helped blood cells recover more quickly after they were damaged by radiation. They published their findings in the journal Nature Communications. (Release)

Supplementing psychotherapy with small doses of MDMA could be an effective strategy to prevent relapses of alcohol addiction in patients, an ongoing small clinical trial suggests. The research is yet another example of how scientists and doctors are finding or rediscovering therapeutic uses for recreational and illicit drugs.

MDMA-assisted therapy is actually an old idea, which enjoyed some popularity in the 1970s and 1980s. Though the exact mechanisms are unclear, the synthetic drug’s euphoric effects are thought to amplify the positive patterns of thinking taught by therapy, as well as make people feel less anxious during sessions. Of course, these same mood-boosting attributes made MDMA a popular recreational drug. This popularity led the U.S. government to ban MDMA in 1985, by classifying it as a Schedule 1 drug with no accepted medical use.

People say, well, but we’re going to stop being human if we merge with machines. No, that is what it means to be human.


Dr. Kurtzweil, I would like to ask you. You have made hundreds of predictions out of which many already have come true, and with no doubt many more will come through. But if you would have to single out your three most important predictions for the upcoming decade, what would they be?

Well, one is health and medicine. We talked about our bodies and our bodies are basically actually information because it’s governed by our genes. They are information processes. We didn’t used to treat it that way. It was basically hit or miss. We’d find something. Oh, here’s something that lowers blood pressure. Here’s something that kills HIV. And we would find these things accidentally, so progress was linear. Still valuable. I gave a speech to 12 and 13 year old science winners recently and I said you all would be senior citizens if it hadn’t been for this progress because life expectancy was 19 a thousand years ago. But this is going to go into high gear now. The enabling factor for health and medicine to become an information technology was the genome project. That itself is a perfect exponential and we now have the software of life and we’re also making exponential progress in being able to model it, simulate it, understand it and reprogram it.

In 2006, scientists discovered a way to “reprogram” mature cells—adult skin cells, for example—into stem cells that could, in principle, give rise to any tissue or organ in the body. Many assumed it was only a matter of time until this groundbreaking technique found its way into the clinic and ushered in a regenerative medicine revolution.

Because the same patient would be both the donor and the recipient of derived from these so-called induced (iPSCs), these cells would be seen as “self” by the , the thinking went, and not subject to the problems of rejection that plague conventional transplants.

But iPSCs haven’t emerged as the cure-all that was originally envisioned, due to unforeseen setbacks, including the surprising preclinical finding that iPSC-derived are often rejected, even after being reintroduced into the organism the cells were sourced from.

✎ Are we living in a simulated reality? Check out what Elon Musk & Neil deGrasse Tyson have to say about it.

★★★ BUILD UNSTOPPABLE CONFIDENCE ★★★
Get a FREE video every morning to help you build your confidence for the next 254 days. Find out here: http://evancarmichael.com/believe/action-plan.php

★★★ SECRET BONUS VIDEO ★★★
What is the One Word that is most important to Tony Robbins, Gary Vaynerchuk, will.i.am, Oprah Winfrey, and Howard Schultz? Find out here: http://www.evancarmichael.com/onewordbonusvideo/

★ RECOMMENDED VIDEOS FOR YOU ★

Researchers at the Stanford University School of Medicine report in a new study that they found a way to help rats recover neurons in the brain’s center of learning and memory. They accomplished the feat by blocking a molecule that controls how efficiently genetic instructions are used to build proteins.

If the approach described in the study can be applied to humans, it may one day help patients who’ve suffered a stroke, or major loss and are thus at higher risk of memory loss.

In the study, to be published online Aug. 19 in eNeuro, researchers induced extremely —as would happen when the heart stops beating—in rats. These rats lost neurons in a specific region of the hippocampus critical to learning and memory, but the researchers improved the animals’ recovery of the by injecting a molecule that blocks a microRNA: a short molecule that tweaks gene activation by preventing the conversion of genetic blueprints into proteins. Interestingly, the scientists found that a microRNA blockade potentially causes astrocytes—cells that support neurons and make up 50% of the cells in the brain—to turn into neurons.