Toggle light / dark theme

Scientists have developed shape-shifting nanorobots that can flow like liquid and solidify like steel, paving the way for breakthroughs in medicine, engineering, and robotics. These nanobots, inspired by gallium-based materials, respond to magnetic fields, allowing them to navigate through tight spaces, repair electronics, and even perform medical procedures. While still in the early stages, this futuristic technology could lead to self-healing materials, autonomous repairs, and shape-adaptive robotics, bringing us closer to a world of smart, responsive materials.

A terrifying glimpse at one potential fate of our Milky Way galaxy has come to light thanks to the discovery of a cosmic anomaly that challenges our understanding of the universe.

An international team of astronomers led by CHRIST University, Bangalore, found that a massive spiral galaxy almost 1 billion light-years away from Earth harbors a supermassive black hole billions of times the sun’s mass which is powering colossal radio jets stretching 6 million light-years across.

That is one of the largest known for any spiral galaxy and upends conventional wisdom of galaxy evolution, because such powerful jets are almost exclusively found in , not spirals.

In a new development at CERN, researchers at the LHCb collaboration have determined the spin-parity of singly heavy charm baryons for the first time, addressing a long-standing mystery in baryon research.

Singly heavy baryons are particles containing one heavy quark—which in this case is a charm quark—and two light quarks. While the existence of these particles is not new, the exact nature of their modes has remained elusive.

The study, published in Physical Review Letters, determined the nature by measuring the spin-parity of these charm baryons. Phys.org spoke to co-author Guanyue Wan, a Ph.D. Candidate at Peking University, China.

Ten years ago, nobody knew that Asgard archaea even existed. In 2015, however, researchers examining deep-sea sediments discovered gene fragments that indicated a new and previously undiscovered form of microbes.

With computer assistance, the researchers assembled these fragments like puzzle pieces to compile the entire genome. It was only then that they realized they were dealing with a previously unknown group of archaea.

Like bacteria, archaea are . Genetically, however, there are significant differences between the two domains, especially regarding their cell envelopes and metabolic processes.

A research team led by Colorado State University has achieved a new milestone in 3D X-ray imaging technology. The scientists are the first to capture high-resolution CT scans of the interior of a large, dense object—a gas turbine blade—using a compact, laser-driven X-ray source.

The findings, published in Optica, describe the science and engineering behind this new radiographic imaging capability and its potential benefits for a range of industries, from aerospace to additive manufacturing.

The project is a years-long collaboration between researchers at CSU’s Departments of Electrical and Computer Engineering and Physics and Los Alamos National Laboratory, with participation from AWE in the U.K.

Phase changes are central to the world around us. Probably the most familiar example is when ice melts into water or water boils into steam, but phase changes also underlie heating systems and even digital memory, such as that used in smartphones.

Triggered by or electricity, some materials can switch between two different phases that represent binary code 0s and 1s to store information. Understanding how a material transforms from one state or phase to another is key to tailoring materials with specific properties that could, for instance, increase switching speed or operate at lower energy costs.

Yet researchers have never been able to directly visualize how these transformations unfold in real time. We often assume materials are perfect and look the same everywhere, but “part of the challenge is that these processes are often heterogeneous, where different parts of the material change in different ways, and involve many different length scales and timescales,” said Aaron Lindenberg, co-author and SLAC and Stanford University professor.

Deep ultraviolet (DUV) lasers, known for their high photon energy and short wavelengths, are essential in various fields such as semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology. These lasers offer increased coherence and reduced power consumption compared to excimer or gas discharge lasers, enabling the development of more compact systems.

As reported in Advanced Photonics Nexus, researchers from the Chinese Academy of Sciences have made a significant advancement by developing a compact, solid-state laser system capable of generating 193-nm coherent light.

This wavelength is crucial for photolithography, a process used to etch intricate patterns onto , forming the backbone of modern electronic devices.

Aging brains may struggle to clear out waste, contributing to memory loss and diseases like Alzheimer’s. But researchers have now found that improving the brain’s waste-draining vessels in old mice actually boosted their memory. Rather than targeting the brain directly, which is tricky due to the