Toggle light / dark theme

Sciatic nerves isolated from untreated mice (left) show evidence of demyelination, which is improved upon treatment (right)

Researchers in Canada and Sweden have used a novel Crispr system to reverse harm caused by muscular dystrophy – usually thought to be permanent – in mice. Pre-clinical studies often treat animals early, before symptoms can be detected, says Ronald Cohn, senior scientist, president and chief executive officer of The Hospital for Sick Children in Toronto.

‘Our results now show that the therapeutic window may indeed be wider,’ Cohn tells Chemistry World. This is significant as all patients ‘are currently diagnosed at a time when symptoms are already presenting’, he adds. The researchers are now exploring partnerships with industry to work towards bringing the research into a clinical trial.

In October 2017, European officials reported that a cloud of the radioactive isotope ruthenium-106 had mysteriously wafted over the continent. Its likely source was in the southern Ural Mountains, near Mayak, the Russian nuclear facility involved in a deadly nuclear disaster in 1957. Strangely, Russia at first denied — but then acknowledged — there had been a surge of radiation. However, it rejected the idea that the surge was the source of the cloud. Now, scientists report in a new PNAS paper that they’ve narrowed down where it actually came from.

There were a number of hypotheses to explain the source of the cloud, which spread over most of Europe and even reached Florida, Guadeloupe, Kuwait, and Mongolia in tiny amounts. Fortunately, it was deemed non-hazardous.

Russian officials denied that Mayak, one of the country’s largest nuclear facilities, was the source of the ruthenium. In November 2017, Rosatom, the state company that runs Russia’s nuclear industry, pointed to high radiation in Italy, Romania, and Ukraine, suggesting they might have been the source. And in December of that year, Russian officials, reasserting that Mayak was not the source of the cloud, suggested the cloud might have come from a satellite that had burned up in the atmosphere. Other hypotheses arose, but scientists have lacked the evidence to support or reject them until now.

As Tesla is preparing to launch its ‘Tesla Semi’ electric truck next year, some are starting to imagine other possible applications than freight transport, like a Tesla Semi electric motorhome.

Motorhomes are often associated with freedom. The idea that you can take your entire home on the road and explore the world is extremely appealing to many.

Electric motorhomes would have the same appeal, but they could also push it to a whole new level.

Physicists from Nanyang Technological University, Singapore (NTU Singapore) and the Niels Bohr Institute in Copenhagen, Denmark, have devised a method to turn a non-magnetic metal into a magnet using laser light.

Magnets and their magnetic field are typically produced by circulating currents, like those found in everyday electromagnetic coils. The ‘handedness’ of these coils—whether they are wound in clockwise or anticlockwise fashion—determines the direction of the produced.

The scientists theorise that when non-magnetic metallic disks are illuminated by linearly polarised light—light that does not possess any handedness of its own—circulating and hence magnetism can spontaneously emerge in the disk.

A research team lead by Osaka University demonstrated how information encoded in the circular polarization of a laser beam can be translated into the spin state of an electron in a quantum dot, each being a quantum bit and a quantum computer candidate. The achievement represents a major step towards a “quantum internet,” in which future computers can rapidly and securely send and receive quantum information.

Quantum computers have the potential to vastly outperform current systems because they work in a fundamentally different way. Instead of processing discrete ones and zeros, information, whether stored in electron spins or transmitted by photons, can be in a superposition of multiple states simultaneously. Moreover, the states of two or more objects can become entangled, so that the status of one cannot be completely described without this other. Handling entangled states allow quantum computers to evaluate many possibilities simultaneously, as well as transmit information from place to place immune from eavesdropping.

However, these entangled states can be very fragile, lasting only microseconds before losing coherence. To realize the goal of a quantum internet, over which coherent light signals can relay quantum information, these signals must be able to interact with inside distant computers.

The spinning ball of plasma that is our Sun produces a spinning magnetic field too, and where that magnetic field weakens, solar winds can escape.

Now scientists have been able to recreate those same effects in a lab for the first time, meaning we can study the bizarre science around our star at close quarters, without a trip across the Solar System.

Knowing how this magnetic field and its associated plasma flows behave is crucial in improving our understanding of how and when solar storms might impact Earth, and potentially put our communications systems and infrastructure under severe strain.

For the past quarter century, scientists battled Alzheimer’s disease under a single guiding principle: that protein clumps—beta-amyloid—deposited outside sensitive brain cells gradually damage neuronal functions and trigger memory loss. The solution seems simple: remove junk amyloid, protect the brain.

They could be completely wrong.

Last month, Alzheimer’s disease defeated another promising near-market drug that tried to prevent or remove amyloid deposits, adding to the disease’s therapeutic “graveyard of dreams.” Although the drug removed toxic amyloid, the patients didn’t get better. The failure is once again spurring scientists to confront an uncomfortable truth: targeting amyloid clumps when patients already show memory symptoms doesn’t work. Wiping out soluble amyloid—fragments of proteins before they aggregate into junk—also dead ends.

What if neither distance nor language mattered? What if technology could help you be anywhere you need to be and speak any language? Using AI technology and holographic experiences this is possible, and it is revolutionary.


Microsoft has created a hologram that will transform someone into a digital speaker of another language. The software giant unveiled the technology during a keynote at the Microsoft Inspire partner conference this morning in Las Vegas. Microsoft recently scanned Julia White, a company executive for Azure, at a Mixed Reality capture studio to transform her into an exact hologram replica.

The digital version appeared onstage to translate the keynote into Japanese. Microsoft has used its Azure AI technologies and neural text-to-speech to make this possible. It works by taking recordings of White’s voice, in order to create a personalized voice signature, to make it sound like she’s speaking Japanese.