Toggle light / dark theme

Researchers have developed artificial ‘chameleon skin’ that changes color when exposed to light and could be used in applications such as active camouflage and large-scale dynamic displays.

The material, developed by researchers from the University of Cambridge, is made of tiny particles of gold coated in a polymer shell, and then squeezed into microdroplets of water in oil. When exposed to heat or , the particles stick together, changing the color of the material. The results are reported in the journal Advanced Optical Materials.

In nature, animals such as chameleons and cuttlefish are able to change color thanks to chromatophores: skin cells with contractile fibers that move pigments around. The pigments are spread out to show their color, or squeezed together to make the cell clear.

This could lead to self-healing cars.


Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a mathematical framework that can turn any sheet of material into any prescribed shape, inspired by the paper craft termed kirigami (from the Japanese, kiri, meaning to cut and kami, meaning paper).

Unlike its better-known cousin origami, which uses folds to shape , kirigami relies on a pattern of cuts in a flat paper sheet to change its flexibility and allow it to morph into 3D shapes. Artists have long used this artform to create everything from pop-up cards to castles and dragons.

“We asked if it is possible to uncover the basic mathematical principles underlying kirigami and use them to create algorithms that would allow us to design the number, size and orientation of the cuts in a flat sheet so that it can morph into any given shape,” said L. Mahadevan, de Valpine Professor of Applied Mathematics, Physics, and Organismic and Evolutionary Biology, the senior author on the paper.

He solved a 127-year-old physics problem on paper and proved that off-centered boat wakes could exist. Five years later, practical experiments proved him right.

“Seeing the pictures appear on the computer screen was the best day at work I’ve ever had,” says Simen Ådnøy Ellingsen, an associate professor at NTNU’s Department of Energy and Process Engineering.

That was the day that Ph.D. candidate Benjamin Keeler Smeltzer and master’s student Eirik Æsøy had shown in the lab that Ellingsen was right and sent him the photos from the experiment. Five years ago, Ellingsen had challenged accepted knowledge from 1887, armed with a pen and paper, and won.

Scientists have identified a specific gene they believe could be a key player in the changes in brain structure seen in several psychiatric conditions, such as schizophrenia and autism.

The team from Cardiff University’s Neuroscience and Mental Health Research Institute has found that the deletion of the gene CYFIP1 leads to thinning of the insulation that covers and is vital for the smooth and rapid communications between different parts of the .

The new findings, published in the journal Nature Communications and highlighted in the journal Nature Reviews Neuroscience, throws new light on the potential cause of and could ultimately point to new and more effective therapies.

North Korea has miniaturised nuclear warheads and made them small enough to fit on ballistic missiles, Japan believes.

Tokyo defence chiefs warn in a new white paper that North Korea’s military activities pose a ‘serious and imminent threat’.

In last year’s report Japan said it was ‘possible’ that North Korea had achieved miniaturisation, but Tokyo now appears to have upgraded its assessment, according to Japanese newspaper Yomiuri.

SpaceX CEO Elon Musk not only wants to explore Mars, he wants to ‘nuke’ it.

In a tweet this week, Musk reiterated calls to ‘Nuke Mars!’ adding that t-shirts are ‘coming soon.’

Jarring though the idea may be, the tweet is a re-hash of an idea championed by Musk in the past that proposes using a nuclear weapon to terraform the red planet for human habitation.

Carbon can be arranged in a number of configurations. When each of its atoms is bonded to three other carbon atoms, it’s relatively soft graphite. Add just one more bond and it becomes one of the hardest minerals known, diamond. Chuck 60 carbon atoms together in a soccerball shape and boom, buckyballs.

But a ring of carbon atoms, where each atom is bonded to just two others, and nothing else? That’s eluded scientists for 50 years. Their best attempts have resulted in a gaseous carbon ring that quickly dissipated.

So it’s a pretty big deal that a team of researchers, from Oxford University and IBM Research, has now created a stable carbon ring.