Toggle light / dark theme

Medications that mitigate inflammation caused by a variety of diseases including rheumatic arthritis may also compromise a person’s immune system, but a new approach points to a possible solution to this problem.

Researchers have discovered a mechanism that might alleviate inflammation by suppressing the of a type of white blood cells called neutrophils. The cells migrate within tissues in order to kill pathogens but may also cause excessive inflammation, resulting in tissue injury and other adverse effects.

The scientists identified a genetic molecule called miR-199, a type of “microRNA,” which reduces the migration of neutrophils, therefore potentially relieving inflammation without compromising the immune system.

I get to try the Guardian GT big-arm robot, which is like a real-life Power Loader from Aliens. It’s controlled by a human and has incredible precision, but it’s also incredibly strong. Made by Sarcos Robotics, the GT can be used in situations that are too dangerous for humans to enter, like decommissioning nuclear power plants.

CNET playlists: https://www.youtube.com/user/CNETTV/playlists
Download the new CNET app: https://cnet.app.link/GWuXq8ExzG
Like us on Facebook: https://www.facebook.com/cnet
Follow us on Twitter: https://www.twitter.com/cnet
Follow us on Instagram: http://bit.ly/2icCYYm

Ira Pastor, ideaXme longevity and aging ambassador and Founder of Bioquark, interviews Robin Farmanfarmaian, medical futurist, bestselling author, professional speaker, and CEO and Co-Founder of ArO.

Ira Pastor Comments:

In 2019, we are spending over $7 trillion around the globe on healthcare. $1 trillion goes to pharmaceutical products, $350 billion to medical devices, $200 billion new life sciences R&D, and on and on.

We tend to forget how much consolidation has occurred in these different healthcare segments. The world’s 10 largest pharmaceutical companies control 60% of that trillion dollar market. The top 8 insurance companies in the U.S. control over 50% of all individual patient coverage. In 43 countries, which account for 3/4 the world’s population, patients only have appointment times between 5- 10 minutes with their primary care physicians. As patients, we know what it’s like to feel somewhat separated and insignificant in this system.

In experiments in mice, Johns Hopkins Medicine researchers say they have developed a way to successfully transplant certain protective brain cells without the need for lifelong anti-rejection drugs.

A report on the research, published Sept. 16 in the journal Brain, details the new approach, which selectively circumvents the against foreign cells, allowing transplanted cells to survive, thrive and protect long after stopping immune-suppressing drugs.

The ability to successfully transplant healthy cells into the without the need for conventional anti-rejection drugs could advance the search for therapies that help children born with a rare but devastating class of genetic diseases in which myelin, the protective coating around neurons that helps them send messages, does not form normally. Approximately 1 of every 100,000 children born in the U.S. will have one of these diseases, such as Pelizaeus-Merzbacher disease. This disorder is characterized by infants missing developmental milestones such as sitting and walking, having involuntary muscle spasms, and potentially experiencing partial paralysis of the arms and legs, all caused by a genetic mutation in the genes that form myelin.