Toggle light / dark theme

As an experiencer, I believe most claims are real. Whether they were man-made or actual exterrestials or exterrestials that work with us it is still a very common phenomenon. There have been several sightings essentially where even the person’s shoes were the only things left. Looking from common science fiction even it is a possibility that Emelia Airhart was teleported by aliens somewhere in the galaxy and can be referenced from the reports on star trek the tv show. There are several missing people that even today with good forensics that hardly anyone can find and the oddity of it all essentially says that essentially there were no traces left like literally none not even DNA. Looking through police records sure there are cold cases but most are solved but there are several cases that even the highest technologies of forensics have not solved. There are several cold cases all around the globe that were not ordinary ones they were, in fact, alien signs. But eventually, with quantum radar we could scan the entire universe to eventually find traces and digitize them finding a sorta batman style way of like forensics but you would need massive hardware but eventually, you could find them or anything in time. If they found Emelia Airhart they will find anyone else if these exist on this universe or even the multiverse if they physically exist. Then they would actually prove that aliens do actually exist aswell. Really nothing is impossible only improbable. Believing in aliens is not as far fetched as it seems. Most of their technology is science-based anyway it is just exotic physics.


The site of the 1973 alleged abduction is getting a historical marker.

Two and a half months since Erik Verlinde submitted his entropic gravity paper, and all of physics and cosmology has turned into entropy. Well, I am exaggerating a bit, and perhaps more than just a bit. Yet, fact is that within two weeks of Erik’s publication a steady stream of ‘entropic everything’ papers has developed at a rate of close to one paper per day. Gravity, Einstein’s equations, cosmic expansion, dark energy, primordial inflation, dark mass: it’s all entropic. Chaos rules. Entropy is king!

Or is it?

Could it be that an ‘entropic bandwagon’ has started rolling? Is this all not just a fad appealing to scientist tired of string theory? What is this elusive entropic force anyway? Do these folks really believe bits of information attract each other?

Scientists at The Australian National University (ANU) have found a way to better detect all collisions of stellar-mass black holes in the universe.

Stellar-mass black holes are formed by the gravitational collapse of a star. Their collisions are some of the most violent events in the universe, creating or ripples in space-time.

These ripples are miniscule and detected using laser interferometers. Until now, many signals have been drowned out by so-called on the pushing the mirrors of the laser interferometer around—making the measurements fuzzy or imprecise.

Microsoft and Warner Bros. have collaborated to successfully store and retrieve the entire 1978 iconic “Superman” movie on a piece of glass roughly the size of a drink coaster, 75 by 75 by 2 millimeters thick.

It was the first proof of concept test for Project Silica, a Microsoft Research project that uses recent discoveries in ultrafast laser optics and artificial intelligence to store data in quartz glass. A laser encodes data in glass by creating layers of three-dimensional nanoscale gratings and deformations at various depths and angles. Machine learning algorithms read the data back by decoding images and patterns that are created as polarized light shines through the glass.

The hard silica glass can withstand being boiled in hot water, baked in an oven, microwaved, flooded, scoured, demagnetized and other environmental threats that can destroy priceless historic archives or cultural treasures if things go wrong.

Diabetes is one of the leading health problems in our modern world and requires the careful management of a patient’s insulin levels. New research from Tufts University may make that process a little easier. In mouse tests, the team implanted beta cells that produce more insulin on demand, when they’re activated by blue light.

At the heart of both types of diabetes is insulin, the hormone that regulates blood sugar levels, allowing cells in the body to properly use it as energy. In type I diabetes, beta cells in the pancreas don’t produce enough insulin, sometimes because the immune system destroys those vital beta cells. In type II diabetes, a patient’s cells stop responding to insulin, or the pancreas can’t keep up with demand, meaning blood glucose levels spike to dangerous highs.

Managing the condition requires constant monitoring of blood sugar levels and boosting insulin levels as needed, either by directly injecting the hormone or through drugs that amplify the beta cells’ production of it.

Hypertension, or high blood pressure, is a leading cause of death and disability in the U.S. The Centers for Disease Control and Prevention reports that the majority of people who have heart failure or experience their first stroke or heart attack have hypertension. Even a slight increase in your blood pressure can increase your risk for a stroke or heart attack, if it is persistent. Nonsteroidal anti-inflammatory drugs, such as aspirin, ibuprofen (Motrin, Advil), indomethacin (Indocin) and piroxicam (Feldene), can increase your blood pressure whether or not you already have hypertension.

But the very features of AI that have allowed it to be so successful in other arenas also make it dangerous when applied to the financial world. These threats mirror the problems that created the last financial crisis — when complex derivatives and poorly understood subprime mortgages sent the world into a deep depression — and must be taken seriously.


As AI gains a foothold on Wall Street it could fundamentally change the way our financial system works. It could also cause financial chaos.