Menu

Blog

Page 8846

Jul 2, 2019

Soon, satellites will be able to watch you everywhere all the time

Posted by in category: satellites

Can privacy survive?

Jul 2, 2019

The Rejuvenation Market in Singapore

Posted by in categories: biotech/medical, economics, finance, government, life extension

With its growing aging population, Singapore has a looming crisis, but could also be primed to become a major player in the rejuvenation biotechnology industry.


Singapore has one of the fastest-aging populations in the world. Senior citizens 65 years old or older are expected to make up almost half of Singapore’s population by 2050. Unfortunately, this swelling population is spending more time living with sickness, even though they live longer. While average lifespans have been extended, healthspans have not. [1] Singaporeans have an impressive average life expectancy of 84.8 years, but an average Singaporean born in 2017 is predicted to spend the last ten and a half years in sickness, compared to how a Singaporean born in 1999 is likely to spend only nine twilight years in deteriorating health.

This is becoming a massive concern for the Singaporean government because of the financial strain that this is imposing on Singapore’s budget. Having the world’s second-lowest birth rate coupled with a rapidly aging population means that the ratio of working adults to senior citizens is quickly shrinking. In 2007, there were 6.9 working adults for every senior citizen. By 2030, there will be 2.3 working adults per senior citizen.

Continue reading “The Rejuvenation Market in Singapore” »

Jul 2, 2019

The cryonics dilemma: will deep-frozen bodies be fit for new life?

Posted by in categories: cryonics, life extension, neuroscience

350 corpses stored in liquid nitrogen await immortality. But detractors say the brain’s complexity is a major stumbling block.

Jul 2, 2019

21CM Cryopreservation Eval Page Foundation

Posted by in categories: biotech/medical, cryonics, life extension, neuroscience

Pichugin2006_Fahy2012_FrontPageImagesRotated

21st Century Medicine (21CM) is a cryobiology research company whose core mission is to develop a cryopreservation protocol sufficiently benign that whole, donated human organs could be vitrified (stored below −130 degrees Celsius without ice formation) and rewarmed when needed for transplantation –an incredibly ambitious goal that has so far eluded medical researchers. 21CM’s scientists are the original pioneers of whole organ vitrification and have been diligently working on the technique for decades. A significant milestone of their progress toward that goal is their demonstration work on rabbit kidneys. Two of their most relevant publications are “Cryopreservation of organs by vitrification: perspectives and recent advances” (Fahy, Wowk, Wu, Phan, Rasch, Chang & Zendejas 2004) and “Physical and biological aspects of renal vitrification” (Fahy, Wowk, Pagotan, Chang, Phan, Thomson & Phan 2009). These papers are a fantastic resource for anyone interested in just how difficult it is to cryopreserve large organs (and by extension whole animals) for long-term storage with the intent on later recovery of biological function. In short, it is incredibly difficult but progress is slowly being made.

The state-of-the-art whole organ vitrification techniques developed by 21CM are the basis of the human cryopreservation protocols used by some cryonics companies (e.g. Alcor). This is made clear in Alcor’s 2004 publication in the New York Academy of Sciences “The Arrest of Biological Time as a Bridge to Engineered Negligible Senescence” (Lemler, Harris, Platt & Huffman 2004).

Continue reading “21CM Cryopreservation Eval Page Foundation” »

Jul 2, 2019

A genetic “cheat code” that activates dormant DNA

Posted by in categories: biotech/medical, genetics

Circa 2011


Scientists have found a gene that can ‘lock’ and ‘unlock’ certain sections of your genetic code, allowing other genes to be expressed in your body. If you are under enough stress, this gene springs into action.

So you think you have access to all your DNA just by being born? Think again. You have to earn it, people. You have to work to get there. You have to suffer. Epigeneticists have proved this to be so, but they also might have a cheat code.

Jul 2, 2019

First life with ‘alien’ DNA

Posted by in categories: bioengineering, biotech/medical, genetics

Circa 2014


An engineered bacterium is able to copy DNA that contains unnatural genetic letters.

Jul 2, 2019

MIT’s Nano-Magnets Can Clean Up Oil Spills

Posted by in categories: government, nanotechnology, robotics/AI, sustainability

Oil spill cleanup technology is a surprisingly innovative field—we learned as much in the wake of the BP Gulf disaster, when everyone from conservation biologists to barbers to Kevin Costner rushed to sell the government on their wild, sometimes literally hairy oil-sucking solutions. We had rubber goop that turned oil solid, massive bags of hair, and MIT’s previous entry into the cleanup fray, robotic oil-eating submarines.

But now the renowned science lab has a better idea: nano-magnets.

MIT researchers have developed a new technique for magnetically separating oil and water that could be used to clean up oil spills. They believe that, with their technique, the oil could be recovered for use, offsetting much of the cost of cleanup.

Jul 2, 2019

Diamond tech destroys ‘forever chemicals’ in water

Posted by in category: futurism

Even trace amounts of PFAS chemicals are dangerous, but a new method shows promise for cleaning up water contaminated with these substances.

Jul 2, 2019

TJ Wass Photo

Posted by in category: futurism

Jul 2, 2019

How to support open-source software and stay sane

Posted by in category: biotech/medical

It’s a familiar problem: open-source software is widely acknowledged as crucially important in science, yet it is funded non-sustainably. Support work is often handled ad hoc by overworked graduate students and postdocs, and can lead to burnout. “It’s sort of the difference between having insurance and having a GoFundMe when their grandma goes to the hospital,” says Anne Carpenter, a computational biologist at the Broad Institute of Harvard and MIT in Cambridge, Massachusetts, whose lab developed the image-analysis tool CellProfiler. “It’s just not a nice way to live.”


Releasing lab-built open-source software often involves a mountain of unforeseen work for the developers.