Toggle light / dark theme

Pet cloning is illegal in many countries but approved in several states including South Korea and the US, where the singer Barbra Streisand announced last year she had cloned her dog. The first significant success in animal cloning was Dolly the sheep, born in Britain in 1996 as the first mammal cloned from an adult cell. In 2005, researchers in South Korea cloned the first dog.


As Chinese spending on pets increases by up to 27% year on year, a Beijing firm has created its first cloned kitten

AFP/Getty.

A startup that spun out of Cambridge University claims a battery breakthrough that can charge an electric car in just six minutes.

It’s something we heard before, but the difference here is that they claim that they can commercialize the new battery as soon as next year.

The startup, Echion Technologies, was founded by Dr. Jean De La Verpilliere while he was studying for his PhD in nanoscience at the University of Cambridge.

In what could be a breakthrough for body sensor and navigation technologies, researchers at KTH have developed the smallest accelerometer yet reported, using the highly conductive nanomaterial, graphene.

Each passing day, nanotechnology and the potential for material make new progress. The latest step forward is a tiny made with graphene by an international research team involving KTH Royal Institute of Technology, RWTH Aachen University and Research Institute AMO GmbH, Aachen.

Among the conceivable applications are monitoring systems for cardiovascular diseases and ultra-sensitive wearable and portable motion-capture technologies.

Old, but good: Cheap Styrofoam coolers get the job done if you just want to keep a couple of drinks cold, but they typically end up in landfills, where they can take hundreds of years to break down, if not longer. Now, Igloo has an alternative that won’t fill you with green guilt during your next trip to the beach.


Made from recycled tree pulp and available for now for $10 each, the Igloo Recool is a green-minded alternative to disposable coolers made from Styrofoam. But can it get you through a day at the beach?

Bioengineers and life scientists incorporate hybridoma technology to produce large numbers of identical antibodies, and develop new antibody therapeutics and diagnostics. Recent preclinical and clinical studies on the technology highlight the importance of antibody isotypes for therapeutic efficacy. In a new study, a research team in Netherlands have developed a versatile Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and homology directed repair (HDR) platform to rapidly engineer immunoglobin domains and form recombinant hybridomas that secrete designer antibodies of a preferred format, species or isotype. In the study, Johan M. S. van der Schoot and colleagues at the interdisciplinary departments of immunology, proteomics, immunohematology, translational immunology and medical oncology, used the platform to form recombinant hybridomas, chimeras and mutants. The stable antibody products retained their antigen specificity. The research team believes the versatile platform will facilitate mass-scale antibody engineering for the scientific community to empower preclinical antibody research. The work is now published on Science Advances.

Monoclonal antibodies (mAb) have revolutionized the medical field with applications to treat diseases that were once deemed incurable. Hybridoma technology is widely used since 1975 for mAb discovery, screening and production, as immortal cell lines that can produce large quantities of mAbs for new antibody-based therapies. Scientists had generated, validated and facilitated a large number of hybridomas in the past decade for preclinical research, where the mAb format and isotypes were important to understand their performance in preclinical models. Genetically engineered mAbs are typically produced with recombinant technology, where the variable domains should be sequenced, cloned into plasmids and expressed in transient systems. These processes are time-consuming, challenging and expensive, leading to outsourced work at contract research companies, which hamper the process of academic early-stage antibody development and preclinical research.

In its mechanism of action, the constant antibody domains forming the fragment crystallizable – (Fc) domain are central to the therapeutic efficacy of mAbs since they engage with specific Fc receptors (FcRs). Preceding research work had highlighted the central role of Fc in antibody-based therapeutics to emphasize this role. Since its advent, CRISPR and associated protein Cas-9 (CRISPR-Cas9)-targeted genome editing technology has opened multitudes of exciting opportunities for gene therapy, immunotherapy and bioengineering. Researchers had used CRISPR-Cas9 to modulate mAb expression in hybridomas, generate a hybridoma platform and engineer hybridomas to introduce antibody modification. However, a platform for versatile and effective Fc substitution from foreign species within hybridomas with constant domains remains to be genetically engineered.

An international team of astronomers has detected a new high-mass gamma-ray binary (HMGB) in the Milky Way galaxy. The newly found HMGB, designated 4FGL J1405.1–6119, is one of only a handful of such objects discovered to date. The discovery was announced in a paper published August 28 on the arXiv pre-print repository.

HMGBs consist of an OB star in orbit with a compact object. In these systems, interactions between the two objects result in an emission with spectral energy distribution (SED) peaks above 1.0 MeV. They are assumed to be precursors to high-mass X-ray binaries (HMXBs).

HMGBs are very rare objects. Astronomers estimate that there are about 100 still undetected HMGBs residing in our home galaxy. Moreover, many known sources of as-yet unknown nature, could potentially be high-mass gamma-ray binaries.

Superhard materials can slice, drill and polish other objects. They also hold potential for creating scratch-resistant coatings that could help keep expensive equipment safe from damage.

Now, science is opening the door to the development of new materials with these seductive qualities.

Researchers have used computational techniques to identify 43 previously unknown forms of that are thought to be stable and superhard—including several predicted to be slightly harder than or nearly as hard as diamonds. Each new carbon variety consists of carbon atoms arranged in a distinct pattern in a .