Toggle light / dark theme

The structure that will house one of the largest and most ambitious energy experiments in history is now complete, with engineers working on the ITER Tokamak Building swinging their last pylon into place in readiness for the nuclear fusion reactor’s assembly stage. Nine years in the making, the facility is built to host the type of super-hot high-speed reactions that take place inside the Sun, and hopefully advance our decades-long pursuit of clean and inexhaustible nuclear fusion energy.

In the works since 1985, ITER (International Thermonuclear Experimental Reactor) is a type of nuclear fusion reactor known as a tokamak and is a collaborative project involving thousands of scientists and engineers from 35 countries. These donut-shaped devices are designed to accommodate circular streams of plasma consisting of hydrogen atoms, which are compressed using superconducting magnets so that they fuse together and release monumental amounts of energy.

There are key technological challenges to overcome when it comes to tokamak reactors. Chiefly, these center on bringing them up to the required temperatures and keeping the streams of plasma in place long enough for the reactions to take place.

When an undiagnosed rare genetic disease caused his young son’s kidneys to fail, Professor Chris Toumazou vowed to find a way of uncovering hidden health risks.

The professor of biomedical engineering realised that, although his son’s condition could not have been prevented, the family could have managed his lifestyle very differently had they known about his condition.

So, he embarked on a mission to help people change their lifestyles and avoid getting sick.

For years, physicists have assumed that Cooper pairs, the electron duos that enable superconductors to conduct electricity without resistance, were two-trick ponies. The pairs either glide freely, creating a superconducting state, or create an insulating state by jamming up within a material, unable to move at all.

But in a new paper published in Science, a team of researchers has shown that Cooper pairs can also conduct electricity with some amount of resistance, like regular metals do. The findings describe an entirely new state of matter, the researchers say, that will require a new theoretical explanation.

“There had been evidence that this would arise in thin film superconductors as they were cooled down toward their , but whether or not that state involved Cooper pairs was an open question,” said Jim Valles, a professor of physics at Brown University and the study’s corresponding author. “We’ve developed a technique that enables us to test that question and we showed that, indeed, Cooper pairs are responsible for transporting charge in this metallic state. What’s interesting is that no one is quite sure at a fundamental level how they do that, so this finding will require some more theoretical and to understand exactly what’s happening.”

There’s reason to think fruits of the collaboration may interest the military. The Pentagon’s cloud strategy lists four tenets for the JEDI contract, among them the improvement of its AI capabilities. This comes amidst its broader push to tap tech-industry AI development, seen as far ahead of the government’s.


Microsoft’s $10 billion Pentagon contract puts the independent artificial-intelligence lab OpenAI in an awkward position.

We stand at the dawn of the space age, a time when we can see the very, very beginning of exploring the vastness of the unknown.

The live-streamed launch of a space rocket is the new entertainment for the revolutionary generation, the millennials who think they can really change the world.

Empowered by the digital revolution and even the crypto revolution, astute many of them and some of them actual geniuses, a new era is at inception where kids play almost at the same level as vast governments.

From remote measurements of the Moon’s mass and radius, researchers also know its density is anomalously low, indicating it lacks iron. While about 30 percent of Earth’s mass is trapped in its iron-rich core, the Moon’s core accounts for only a few percent of its total mass. Despite this substantial difference in iron, Apollo samples later revealed that mantle rocks from the Moon and Earth have remarkably similar concentrations of oxygen.

And because these lunar and terrestrial rocks differ significantly from meteorites originating from Mars or the asteroid belt, it shows the Moon and Earth’s mantle share a past connection. Additionally, compared with Earth, lunar rocks are more depleted in so-called volatile elements — those that vaporize easily upon heating — which hints that the Moon formed at high temperatures.

Finally, researchers know that tidal interactions forced the Moon to spiral outward over time, which in turn caused Earth to spin more slowly. This implies the Moon formed much closer to Earth than it is now. Precise measurements of the Moon’s position using surface reflectors placed during the Apollo program subsequently confirmed this, verifying the Moon’s orbit expands by about 1.5 inches (3.8 centimeters) each year.

IF YOU LIKE THESE VIDEOS, YOU CAN MAKE A SMALL DONATION VIA PAYPAL or BITCOIN LINKS HERE: https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_b…3G8SJ4ABT4

(paypal email: [email protected])

MY BITCOIN: 19WnEPwjRHnnfiDpVFUni1A2Amqvxy4gud

Contact email: [email protected]

Apart from the asteroid that wiped out the dinosaurs 65 million years ago, there aren’t many connections between space and dinosaurs outside of the imagination. But that all changed when NASA research scientist Jessie Christiansen brought the two together in an animation on social media this month.

For the past decade, Christiansen has studied planet occurrence rates, or how often and what kinds of planets occur in the galaxy, while studying data from exoplanet hunters such as NASA’s Kepler, K2 and TESS missions.

During a stargazing party at the California Institute of Technology, Christiansen was explaining how young the stars were that they observed. The skywatchers were looking at the Pleiades, a bright young cluster of stars that are some of the youngest in our sky.

At this year’s Intel AI Summit, the chipmaker demonstrated its first-generation Neural Network Processors (NNP): NNP-T for training and NNP-I for inference. Both product lines are now in production and are being delivered to initial customers, two of which, Facebook and Baidu, showed up at the event to laud the new chippery.

The purpose-built NNP devices represent Intel’s deepest thrust into the AI market thus far, challenging Nvidia, AMD, and an array of startups aimed at customers who are deploying specialized silicon for artificial intelligence. In the case of the NNP products, that customer base is anchored by hyperscale companies – Google, Facebook, Amazon, and so on – whose businesses are now all powered by artificial intelligence.

Naveen Rao, corporate vice president and general manager of the Artificial Intelligence Products Group at Intel, who presented the opening address at the AI Summit, says that the company’s AI solutions are expected to generate more than $3.5 billion in revenue in 2019. Although Rao didn’t break that out into specific products sales, presumably it includes everything that has AI infused in the silicon. Currently, that encompasses nearly the entire Intel processor portfolio, from the Xeon and Core CPUs, to the Altera FPGA products, to the Movidius computer vision chips, and now the NNP-I and NNP-T product lines. (Obviously, that figure can only include the portion of Xeon and Core revenue that is actually driven by AI.)