Toggle light / dark theme

Dr. Nick interviews Liz Parrish, the Founder, and CEO of BioViva Sciences USA Inc at RaadFest in Las Vegas. Nick Delgado, ABAAHP is one of the leading experts in the field of bio-identical hormones, herbs, nutrition, exercise, partner intimacy, mindful self-motivation. Our goal is to help you restore your cellular health to radically improve the quality of life and world health.
————–
Liz Parrish is the Founder and CEO of BioViva Sciences USA Inc. BioViva is committed to extending healthy lifespans using gene therapy. Liz is known as “the woman who wants to genetically engineer you,” she is a humanitarian, entrepreneur and innovator and a leading voice for genetic cures.
————–

CONNECT WITH US:

INSTAGRAM: https://www.instagram.com/dr.nickdelg
TWITTER: https://twitter.com/delgadoprotocol
FACEBOOK: https://www.facebook.com/theagedoc/

Shop Delgado Protocol: https://delgadoprotocol.com/

OmniVision, a developer of advanced digital imaging solutions, has announced that it has won a place in the Guinness Book of World Records with the development of its OV6948 image sensor—it now holds the record for the smallest image sensor in the world. Along with the sensor, the company also announced the development of a camera module based on the sensor called the CameraCubeChip.

In its announcement on the company website, representatives of OmniVision suggest the main use for the new sensor and module is for medical applications. They claim the camera module can be affixed to disposable endoscopes to capture high-resolution images of very tiny parts of the body via such as nerves, eye parts, the heart, the spine, gynecological areas, inside joints and in parts of the urological system.

Reps for the company note that the U.S. Food and Drug Administration has recently pointed out that cross-contamination issues related to the reuse of endoscopes requires prevention. The new camera, when used with new disposable endoscopes, solves the problem by removing the need to reuse such devices.

The three-body problem, one of the most notoriously complex calculations in physics, may have met its match in artificial intelligence: a new neural network promises to find solutions up to 100 million times faster than existing techniques.

First formulated by Sir Isaac Newton, the three-body problem involves calculating the movement of three gravitationally interacting bodies – such as the Earth, the Moon, and the Sun, for example – given their initial positions and velocities.

It might sound simple at first, but the ensuing chaotic movement has stumped mathematicians and physicists for hundreds of years, to the extent that all but the most dedicated humans have tried to avoid thinking about it as much as possible.

Uber has announced it’s developing a new drone it hopes to use for Uber Eats deliveries one day. Eric Allison, the head of Uber Elevate, talked about the new drone in Detroit yesterday at the Forbes Under 30 Summit. And while the mock-up design looks pretty cool, with rotating wings and six rotors, the details released so far raise some red flags.

According to Forbes (emphasis ours):

The new drone design can carry dinner for up two people and features six rotors, the company says. Its battery is designed for eight minutes, including loading and unloading, and it can only do relatively short hauls. The drone has a roundtrip range of 12 miles, or a total flight time of 18 minutes.

On Friday, October 25, we hosted a Q&A webinar with the team behind MitoMouse, the second MitoSENS program that we are funding. In this webinar, Drs. Aubrey de Grey, Amutha Boominathan, and Matthew “Oki” O’Connor answered viewer questions about the nature of their research and the SENS approach to age-related disease.

There are only a few days left to donate! If you haven’t already, help SENS Research Foundation fund the final stretch goal of this critical research at https://lifespan.io/mitomouse and help bring about the end of mitochondrial dysfunction more quickly.

Using a supercomputing system, MIT researchers have developed a model that captures what web traffic looks like around the world on a given day, which can be used as a measurement tool for internet research and many other applications.

Understanding patterns at such a large scale, the researchers say, is useful for informing policy, identifying and preventing outages, defending against cyberattacks, and designing more efficient computing infrastructure. A paper describing the approach was presented at the recent IEEE High Performance Extreme Computing Conference.

For their work, the researchers gathered the largest publicly available internet traffic dataset, comprising 50 billion data packets exchanged in different locations across the globe over a period of several years.

Chameleons, salamanders and many toads use stored elastic energy to launch their sticky tongues at unsuspecting insects located up to one-and-a-half body lengths away, catching them within a tenth of a second.

Ramses Martinez, an assistant professor in Purdue’s School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue University’s College of Engineering and other Purdue researchers at the FlexiLab have developed a new class of entirely and actuators capable of re-creating bioinspired high-powered and high-speed motions using stored elastic energy. These robots are fabricated using stretchable polymers similar to rubber bands, with internal pneumatic channels that expand upon pressurization.

The elastic energy of these robots is stored by stretching their body in one or multiple directions during the fabrication process following nature-inspired principles. Similar to the chameleon’s tongue strike, a pre-stressed pneumatic soft robot is capable of expanding five times its own length, catch a live fly beetle and retrieve it in just 120 milliseconds.