Toggle light / dark theme

In the iconic frontispiece to Thomas Henry Huxley’s Evidence as to Man’s Place in Nature (1863), primate skeletons march across the page and, presumably, into the future: “Gibbon, Orang, Chimpanzee, Gorilla, Man.” Fresh evidence from anatomy and palaeontology had made humans’ place on the scala naturae scientifically irrefutable. We were unequivocally with the animals — albeit at the head of the line.


Biological advances have repeatedly changed who we think we are, writes Nathaniel Comfort, in the third essay of a series marking Nature’s anniversary on how the past 150 years have shaped science today. Biological advances have repeatedly changed who we think we are.

Researchers long wondered how the billions of independent neurons in the brain come together to reliably build a biological machine that easily beats the most advanced computers. All of those tiny interactions appear to be tied to something that guarantees an impressive computational capacity.

Over the past 20 years, evidence mounted in support of a theory that the tunes itself to a point where it is as excitable as it can be without tipping into disorder, similar to a phase transition. This criticality hypothesis asserts that the brain is poised on the fine line between quiescence and chaos. At exactly this line, is maximized.

However, one of the key predictions of this theory—that criticality is truly a set point, and not a mere inevitability—had never been tested. Until now. New research from Washington University in St. Louis directly confirms this long-standing prediction in the brains of freely behaving animals.

Researchers led by the renowned ancient artifacts decoder, Professor Brent Seales, will be using Diamond, the UK’s national synchrotron science facility in the heart of Oxfordshire, to examine a collection of world-famous ancient artifacts owned by the Institut de France. Using this powerful light source and special techniques the team has developed, the researchers are working to virtually unwrap two complete scrolls and four fragments from the damaged Herculaneum scrolls. After decades of effort, Seales thinks the scans from Diamond represent his team’s best chance yet to reveal the elusive contents of these 2,000-year-old papyri.

Prof Seales is director of the Digital Restoration Initiative at the University of Kentucky (US), a research program dedicated to the development of software tools that enable the recovery of fragile, unreadable texts. According to Seales, Diamond Light Source is an absolutely crucial element in our long-term plan to reveal the writing from damaged materials, as it offers unparalleled brightness and control for the images we can create, plus access to a brain trust of scientists who understand our challenges and are eager to help us succeed.?Texts from the ancient world are rare and precious, and they simply cannot be revealed through any other known process. Thanks to the opportunity to study the scrolls at Diamond Light Source, which has been made possible by the National Endowment for the Humanities and the Andrew Mellon Foundation, we are poised to take a tremendous step forward in our ability to read and visualize this material.

Scientists have observed a quantum vibration at normal room temperature for the first time, a phenomenon that usually requires ultra-cold, carefully calibrated conditions – bringing us another step closer to understanding the behaviour of quantum mechanics in common materials.

The team was able to spot a phonon, a quantum particle of vibration generated from high-frequency laser pulses, in a piece of diamond. These phonons are notoriously hard to detect, partly because of their sensitivity to heat.

What makes observing a phonon so important is that it shows a vibration acting as a single unit of energy (as described by quantum mechanics), as well as a wave (as described by classical physics). At room temperature in open air conditions, it brings quantum behaviour “closer to our daily life” in the words of the researchers.

Digital assets will only continue to grow. With clearer regulation coming in the near future, large financial institutions such as banks and asset managers will have the official ‘stamp of approval’ needed to participate in the market, driving tokenisation of existing asset classes and substantial capital inflows to the sector.


How investment in safekeeping technology will help determine the winners in Asia’s new token economy.