Toggle light / dark theme

Circa 2016


A set of new laser systems and proposed upgrades at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) will propel long-term plans for a more compact and affordable ultrahigh-energy particle collider.

Progress on these laser systems and laser-driven accelerators could also provide many spinoffs, such as a new tool to hunt for radioactive materials, and a miniaturized and highly tunable free-electron laser system enabling a range of science experiments.

These efforts are outlined in a DOE-sponsored workshop report that focuses on a set of 10-year road maps designed to kick-start R&D driving a next-generation particle collider for high-energy physics. The ultimate goal is a machine capable of exploring physics beyond the reach of CERN’s Large Hadron Collider (LHC). Today’s most powerful collider, the LHC enabled the discovery of the Higgs boson that resulted in the 2013 Nobel Prize in physics.

The Guinness Book of World Records has awarded the Japan Aerospace Exploration Agency (JAXA) the official record for the lowest altitude achieved by an Earth observation satellite. During its mission from December 23, 2017 to October 1, 2019, the Super Low Altitude Test Satellite (SLATS) “TSUBAME” reached a suitably super-low altitude of 167.4 km (104 mi).

Earth observation satellites are excellent platforms for learning more about our planet, but what makes them so effective is also one of their major disadvantages. Because they sit in low-Earth orbit at up to 2,000 km (1,200 mi), they can observe large areas of the Earth’s surface. Unfortunately, being at such an altitude means that the resolution of the images that can be captured is limited.

The TSUBAME mission was designed to test the feasibility of placing satellites in super-low altitudes between 200 and 300 km (120 and 190 mi), where they can capture high-resolution images. The problem is that the highly tenuous atmosphere at that altitude produces a thousand times more atmospheric drag than higher altitudes, and the atomic oxygen present can cause spacecraft to quickly deteriorate.

The last solar eclipse of the decade—and the only annular solar eclipse of the year—will be visible in Europe, Asia, Australia, and Africa starting just a few hours after this article’s publication.

Annular solar eclipses, like total solar eclipses, occur when the Moon passes in front of the Sun. However, the Moon doesn’t totally cover the Sun during annular solar eclipses, leaving behind an annulus, or bright ring.