Toggle light / dark theme

UConn engineers have designed a non-toxic, biodegradable device that can help medication move from blood vessels into brain tissues —a route traditionally blocked by the body’s defense mechanisms. They describe their invention in the 23 December issue of PNAS.

Blood vessels in the are lined by cells fitted together tightly, forming a so-called , which walls off bacteria and toxins from the brain itself. But that blood-brain also blocks medication for brain diseases such as cancer.

“A safe and effective way to open that barrier is ultrasound,” says Thanh Nguyen, a biomedical engineer at UConn. Ultrasonic waves, focused in the right place, can vibrate the cells lining enough to open transient cracks in the blood-brain barrier large enough for medication to slip through. But the current ultrasound technology to do this requires multiple ultrasound sources arrayed around a person’s skull, and then using an MRI machine to guide the person operating the ultrasounds to focus the waves in just the right place. It’s bulky, difficult, and expensive to do every time a person needs a dose of medication.

Let’s be clear.


What can we trust? Why is the ‘information ecology’ so damaged, and what would it take to make it healthy?

This is a fundamental question, because without good sensemaking, we cannot even begin to act in the world. It is also a central concern in what many are calling the “meaning crisis”, because what is meaningful is connected to what is real.