Toggle light / dark theme

A team of scientists in Hungary recently published a paper that hints at the existence of a previously unknown subatomic particle. The team first reported finding traces of the particle in 2016, and they now report more traces in a different experiment.

If the results are confirmed, the so-called X17 particle could help to explain dark matter, the mysterious substance scientists believe accounts for more than 80% of the mass in the universe. It may be the carrier of a “fifth force” beyond the four accounted for in the standard model of physics (gravity, electromagnetism, the weak nuclear force and the strong nuclear force).

Artificial flesh is growing ever closer to the real thing. Scientists in Australia have now created a new jelly-like material which they claim has the strength and durability of actual skin, ligaments, or even bone.

“With the special chemistry we’ve engineered in the hydrogel, it can repair itself after it has been broken like human skin can,” explains chemist Luke Connal from the Australian National University.

“Hydrogels are usually weak, but our material is so strong it could easily lift very heavy objects and can change its shape like human muscles do.”

Currently over 6,300 people in the UK are waiting for an organ transplant, and sadly everyday around three people die waiting. In efforts to reduce the reliance on organ donors and improve the outlook for patients, alternative sources of organs are being explored by several research groups.

In a study recently published in Nature Biomedical Engineering, bioengineered livers created by decellularization and recellularization were implanted into pigs, where they were able to sustain continuous perfusion for up to 15 days. We spoke to Miromatrix’s CEO, Dr Jeff Ross, to learn more about the study and how it advances the state of bioengineering organs.

Anna MacDonald (AM): What are some of the main challenges faced when creating bioengineered organs?

Lancaster University researchers have discovered, for the first time, how a genetic alteration that increases the risk of developing Autism and Tourette’s impacts on the brain.

Their research also suggests that ketamine, or related drugs, may be a useful treatment for both of these disorders.

Autism affects an estimated 2.8 million people in the UK while Tourette’s Syndrome — a condition that causes a person to make involuntary sounds and movements called tics –affects an estimated 300,000 people in the UK. The treatments available for both disorders are limited and new treatments are urgently required. Recent research has also shown that these disorders are genetically linked.

Taking a cue from the self-cleaning properties of the lotus leaf, researchers at Ben-Gurion University of the Negev have shed new light on microscopic forces and mechanisms that can be optimized to remove dust from solar panels to maintain efficiency and light absorption. The new technique removed 98 percent of dust particles.

In a new study published in Langmuir, the researchers confirmed that modifying the surface properties of may greatly reduce the amount of remaining on the surface, and significantly increase the potential of solar energy harvesting applications in the desert.

Dust adhesion on solar panels is a major challenge to energy harvesting through photovoltaic cells and solar thermal collectors. New solutions are necessary to maintain maximum collection efficiency in high dust density areas such as the Negev desert in Israel.