Toggle light / dark theme

An international research group has applied methods of theoretical physics to investigate the electromagnetic response of the Great Pyramid to radio waves. Scientists predicted that under resonance conditions, the pyramid can concentrate electromagnetic energy in its internal chambers and under the base. The research group plans to use these theoretical results to design nanoparticles capable of reproducing similar effects in the optical range. Such nanoparticles may be used, for example, to develop sensors and highly efficient solar cells. The study was published in the Journal of Applied Physics.

While Egyptian are surrounded by many myths and legends, researchers have little scientifically reliable information about their physical properties. Physicists recently took an interest in how the Great Pyramid would interact with electromagnetic waves of a resonant length. Calculations showed that in the resonant state, the pyramid can concentrate in the its internal chambers as well as under its base, where the third unfinished chamber is located.

These conclusions were derived on the basis of numerical modeling and analytical methods of physics. The researchers first estimated that resonances in the pyramid can be induced by radio waves with a length ranging from 200 to 600 meters. Then they made a model of the electromagnetic response of the pyramid and calculated the extinction cross section. This value helps to estimate which part of the incident wave energy can be scattered or absorbed by the pyramid under resonant conditions. Finally, for the same conditions, the scientists obtained the electromagnetic field distribution inside the pyramid.

On September 20, the initial designs for the complex were presented at an event at the New York Public Library in midtown Manhattan. British firm Adjaye Associates won the contract to design the center, which will consist of three large buildings arranged around a central garden, under which will sit a museum and education center.

“We were led towards these powerful plutonic forms with a clear geometry, three cubes sitting on a plinth — though not aligned, they each have different orientations,” Sir David Adjaye told designboom. Each of the three buildings share a similar silhouette, but the facades have different architectural design and detailing, communicating the shared origins of the three religions, as well as their cultural and historical differences.

Adjaye, who also designed the Nobel Peace Centre in Oslo and the National Museum of African American History in D.C., says he saw the garden, “as a powerful metaphor, this safe space where community, connection and civility combine.”

Circa 2016


A set of new laser systems and proposed upgrades at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) will propel long-term plans for a more compact and affordable ultrahigh-energy particle collider.

Progress on these laser systems and laser-driven accelerators could also provide many spinoffs, such as a new tool to hunt for radioactive materials, and a miniaturized and highly tunable free-electron laser system enabling a range of science experiments.

These efforts are outlined in a DOE-sponsored workshop report that focuses on a set of 10-year road maps designed to kick-start R&D driving a next-generation particle collider for high-energy physics. The ultimate goal is a machine capable of exploring physics beyond the reach of CERN’s Large Hadron Collider (LHC). Today’s most powerful collider, the LHC enabled the discovery of the Higgs boson that resulted in the 2013 Nobel Prize in physics.

The Guinness Book of World Records has awarded the Japan Aerospace Exploration Agency (JAXA) the official record for the lowest altitude achieved by an Earth observation satellite. During its mission from December 23, 2017 to October 1, 2019, the Super Low Altitude Test Satellite (SLATS) “TSUBAME” reached a suitably super-low altitude of 167.4 km (104 mi).

Earth observation satellites are excellent platforms for learning more about our planet, but what makes them so effective is also one of their major disadvantages. Because they sit in low-Earth orbit at up to 2,000 km (1,200 mi), they can observe large areas of the Earth’s surface. Unfortunately, being at such an altitude means that the resolution of the images that can be captured is limited.

The TSUBAME mission was designed to test the feasibility of placing satellites in super-low altitudes between 200 and 300 km (120 and 190 mi), where they can capture high-resolution images. The problem is that the highly tenuous atmosphere at that altitude produces a thousand times more atmospheric drag than higher altitudes, and the atomic oxygen present can cause spacecraft to quickly deteriorate.

The last solar eclipse of the decade—and the only annular solar eclipse of the year—will be visible in Europe, Asia, Australia, and Africa starting just a few hours after this article’s publication.

Annular solar eclipses, like total solar eclipses, occur when the Moon passes in front of the Sun. However, the Moon doesn’t totally cover the Sun during annular solar eclipses, leaving behind an annulus, or bright ring.