Toggle light / dark theme

For a time 20 years ago, millions of people, including corporate chiefs and government leaders, feared that the internet was going to crash and shatter on New Year’s Eve and bring much of civilization crumbling down with it. This was all because computers around the world weren’t equipped to deal with the fact of the year 2000. Their software thought of years as two digits. When the year 99 gave way to the year 00, data would behave as if it were about the year 1900, a century before, and system upon system in an almost infinite chain of dominoes would fail. Billions were spent trying to prepare for what seemed almost inevitable.


Twenty years ago, the world feared that a technological doomsday was nigh. It wasn’t, but Y2K had a lot of prescient things to say about how we interact with tech.

Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery’s liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage – and the material can also be recycled without the use of harsh chemicals or high temperatures.

The new study, which could help manufacturers produce recyclable, self-healing commercial batteries, is published in the Journal of the American Chemical Society.

As lithium-ion batteries go through multiple cycles of charge and discharge, they develop tiny, branchlike structures of solid lithium called dendrites, the researchers said. These structures reduce battery life, cause hotspots, and electrical shorts, and sometimes grow large enough to puncture the internal parts of the battery, causing explosive chemical reactions between the electrodes and electrolyte liquids.

Scientists have uncovered a crucial change in cancer cells that allows them to spread around the body – by switching from sugar to fatty acids to fuel their growth.

Changing their ‘diet’ in this way allows tumour cells to set up shop at new sites where resources such as glucose – their preferred food source – are limited.

Researchers at The Institute of Cancer Research, London, found that a protein called AKR1B10 helps cells adapt the ways in which they get their energy.

There is a common myth that bone marrow stem cells do not work in the elderly.

However, we are seeing elderly patients respond very well to bone marrow stem cells.

In this blog, we share the experience of 80-year-old Georgia whose long-standing back pain resolved after bone marrow stem cell therapy. We will also explain why they are effective even in older patients.


Researchers from the Dutch Delft University of Technology and NASA/ESA recommend that we build a Mars base with the use of bacteria. In short, the idea is to send a spacecraft containing bacteria to Mars several years ahead of sending human settlers. Those bacteria can then start mining for iron that will later be used by human pioneers when building settlements.

Benjamin Lehner, a Ph.D. student from the Delft University of Technology, mapped out a complete plan to adequately prepare for human settlers. He proposes to send an initial capsule containing a bioreactor, an uncomplicated rover that is capable of digging, and a 3D printer. The reactor will be filled with a type of bacteria called ‘Shewanella oneidensis’ that can convert the non-usable naturally occurring iron in the Martian soil to usable magnetite that is easy to extract. This magnetite can then be converted to components like iron plates with the 3D printer.

Princeton researchers have uncovered new rules governing how objects absorb and emit light, fine-tuning scientists’ control over light and boosting research into next-generation solar and optical devices.

The discovery solves a longstanding problem of scale, where light’s behavior when interacting with violates well-established physical constraints observed at larger scales.

“The kinds of effects you get for very small objects are different from the effects you get from very large objects,” said Sean Molesky, a postdoctoral researcher in electrical engineering and the study’s first author. The difference can be observed in moving from a molecule to a grain of sand. “You can’t simultaneously describe both things,” he said.

The Mars 2020 rover, which sets off for the Red Planet next year, will not only search for traces of ancient life, but pave the way for future human missions, NASA scientists said Friday as they unveiled the vehicle.

The has been constructed in a large, sterile room at the Jet Propulsion Laboratory in Pasadena, near Los Angeles, where its driving equipment was given its first successful test last week.

Shown to invited journalists on Friday, it is scheduled to leave Earth in July 2020 from Florida’s Cape Canaveral, becoming the fifth US rover to land on Mars seven months later in February.