Circa 2013
A new metamaterial is the first with a refractive index near zero, allowing light waves to propagate ultrafast over nano-distances.
Circa 2013
A new metamaterial is the first with a refractive index near zero, allowing light waves to propagate ultrafast over nano-distances.
IBM announced a new 28-qubit quantum system backend, Raleigh and achieved a system demonstrating Quantum Volume of 32. This is double the quantum volume of 16 of a prior IBM system.
Quantum Volume (QV) is a hardware-agnostic metric that we defined to measure the performance of a real quantum computer. Each system IBM develop brings us along a path where complex problems will be more efficiently addressed by quantum computing; therefore, the need for system benchmarks is crucial, and simply counting qubits is not enough. Quantum Volume takes into account the number of qubits, connectivity, and gate and measurement errors. Material improvements to underlying physical hardware, such as increases in coherence times, reduction of device crosstalk, and software circuit compiler efficiency, can point to measurable progress in Quantum Volume, as long as all improvements happen at a similar pace.
Findings from a recent research project, conducted by a Marshall University scientist and assistant professor in the Marshall University College of Science, with researchers in Texas, was recently published in the December issue of the prestigious online journal, Nature Communications.
Dr. Eugene Shakirov is studying the connection between ribosomes and telomeres in plants. Telomeres are the physical ends of chromosomes and they shorten with age in most cells. Accelerated shortening of telomeres is linked to age-related diseases and overly long telomeres are often linked to cancer.
Telomere length varies between individuals at birth and is known to predetermine cellular lifespan, but the genes establishing telomere length variations are largely unknown. The research being done by Shakirov, along with collaborators at the University of Texas at Austin, Texas A&M University, HudsonAlpha Institute for Biology and the Kazan Federal University in Russia focused on the study of the genetic and epigenetic causes of natural telomere length variation in Arabidopsis thaliana, a small flowering plant.
Cybersecurity company warns that hackers are investigating industrial control systems associated with power infrastructure.
A hacking group believed to be from North Korea is reportedly stepping up its game to continue its cryptocurrency stealing campaigns.
In a statement published yesterday, security researchers from Kaspersky say they found evidence to suggest Lazarus has made significant changes to its attack methodology.
According to Kaspersky, the hacking group is taking “more careful steps” and is employing “improved tactics and procedures” to steal cryptocurrency.
Scientists at the MDI Biological Laboratory, in collaboration with scientists from the Buck Institute for Research on Aging in Novato, Calif., and Nanjing University in China, have identified synergistic cellular pathways for longevity that amplify lifespan fivefold in C. elegans, a nematode worm used as a model in aging research.
The increase in lifespan would be the equivalent of a human living for 400 or 500 years, according to one of the scientists.
The research draws on the discovery of two major pathways governing aging in C. elegans, which is a popular model in aging research because it shares many of its genes with humans and because its short lifespan of only three to four weeks allows scientists to quickly assess the effects of genetic and environmental interventions to extend healthy lifespan.
Shaking hands with BrainCo’s artificial intelligence-powered prosthetic hand is like shaking hands with an exciting, optimistic version of the future. Here’s what this amazing prosthesis is able to do, and how it promises to transform life for amputees all around the world.
Seeking Delphi podcast host Mark Sackler is joined by panelists Liz Parrish, Aubrey de Grey, David Wood and co-moderator Keith Comito to discuss scenarios for getting to—and dealing with—a post aging future.
Johns Hopkins researchers report that a type of biodegradable, lab-engineered nanoparticle they fashioned can successfully deliver a “suicide gene” to pediatric brain tumor cells implanted in the brains of mice. The poly(beta-amino ester) nanoparticles, known as PBAEs, were part of a treatment that also used a drug to kill the cells and prolong the test animals’ survival.
In their study, described in a report published January 2020 in the journal Nanomedicine: Nanotechnology, Biology and Medicine, the researchers caution that for safety and biological reasons, it is unlikely that the suicide gene herpes simplex virus type I thymidine kinase (HSVtk)—which makes tumor cells more sensitive to the lethal effects of the anti-viral drug ganciclovir—could be the exact therapy used to treat human medulloblastoma and atypical teratoid/rhabdoid tumors (AT/RT) in children.
So-called “suicide genes” have been studied and used in cancer treatments for more than 25 years. The HSVtk gene makes an enzyme that helps restore the function of natural tumor suppression.
“If everything regenerated, there would be no death.” Richard J. Goss, Ph.D.Principles of Regeneration Richard J. Goss, Ph.D., author of Principles of Regeneration, was a visiting scientist at the MDI Biological Laboratory in the late 1960’s and early 1970’s. But is the statement that there would be no death if everything regenerated correct? The zebrafish,…