Toggle light / dark theme

Recent AI lecture by Stanford University.


What do web search, speech recognition, face recognition, machine translation, autonomous driving, and automatic scheduling have in common? These are all complex real-world problems, and the goal of artificial intelligence (AI) is to tackle these with rigorous mathematical tools.

In this course, you will learn the foundational principles that drive these applications and practice implementing some of these systems. Specific topics include machine learning, search, game playing, Markov decision processes, constraint satisfaction, graphical models, and logic. The main goal of the course is to equip you with the tools to tackle new AI problems you might encounter in life.

Tesla vehicles are apparently going to talk to people not only inside the car but also outside. CEO Elon Musk even released a quick preview video.

It’s no secret that Tesla wants to use more artificial intelligence in its business.

Two years ago, Tesla hired Andrej Karpathy to lead its computer vision and AI team and they have been expanding their team since then.

(NaturalNews) Turn over a brick or a board that has been lying in the yard for a while and underneath you may find a collection of pill bugs scurrying about. Also known as “rollie pollies” or woodlice, these grey-colored creatures can be found in many dark, moist environments feeding on decaying matter. What’s interesting about these critters is that they are not bugs at all. They are crustaceans and more closely resemble crabs and shrimp, not insects. They are characterized by their ability to roll up into a ball when they feel threatened. Another unique feature is that they have seven pairs of legs. They also act like kangaroos, toting their eggs around with them in a special pouch called a marsupium, located on the pillbug’s underside. Even stranger, they don’t urinate. Instead, they exchange gases through gill-like structures.

Breeding or collecting pill bugs may be an important practice for homesteading and gardening. The guts of these pill bugs contain a number of microbes that help the critter feed on dead, organic matter. By releasing mass quantities of pill bugs into a mature garden, one can be assured that dead plant matter is being properly broken down and returned to healthy soil. Pill bugs literally speed up the process of decomposition. They circulate the soil. This can be very useful in composting. Treats for pill bugs include fungus and monocotyledonous leaves.

Pillbugs play an important role in the cycle of healthy plant life. They return organic matter to the soil so it can be digested further by fungi, protozoans and bacteria. This process produces a natural supply of nitrates, phosphates and other vital nutrients that plants need to thrive now and in future growing seasons. It is important not to introduce pill bugs into the garden too early, as they tend to munch on emerging plants. The grey soil workers often live up to three years.

“Tim Crow must be proud to see his theory being tested at a complex level.” That’s how I tweeted the news on a recent Brain article by van den Heuvel et al (2019). Tim Crow’s theory on schizophrenia as a possible by-product of human brain evolution was quite inspiring and led to many fruitful discussions in our evolutionary psychiatry group when I was a junior trainee (which I wrote about a while ago: EPSIG Newsletter, June 2018). And here it was, the theory was tested by using novel methodology. Now I am pleased to say that the article did not disappoint, so I can enjoy the initial thrill and share my take with the Mental Elf World.

Tim Crow’s original question was intriguing: “Is schizophrenia the price that Homo sapiens pay for language?” (Crow, 1997). He argued that schizophrenia may be considered an extreme variation of brain systems which are relatively new in evolutionary timescale. Brain structures that are mostly implicated in schizophrenia were also unique to humans as mediators of language and higher cognitive functions. Those relatively new (in evolutionary timescale) brain systems may be more vulnerable to insults (e.g. stress, trauma, neurodevelopmental conditions) and manifest as dysfunctional brain circuits in schizophrenia.

The prevalence of schizophrenia is fairly constant across human populations (Jablensky et al. 1992), and the prevalence does not change despite low fecundity rates of people with schizophrenia. This can only be possible in the case of overall genetic predisposition across the population.

Step off of that bathroom scale. That number won’t tell you how healthy you actually are, according to a University of Alberta researcher.

Nutrition expert Carla Prado has written extensively about the dangers of low across a wide range of body types. According to her recent review of nearly 150 studies published over a single year, patients with low mass experience more complications, longer hospital stays and lower survival rates.

“Muscle is very important for movement and balance, for posture, strength and power, but it’s also a reservoir of amino acids,” said Prado. “The more you lose, the greater the consequences.”

The mystery of why quantum matter jumps from a wave-like state to a well-defined particle when it is observed has puzzled scientists for nearly a 100 years.

Known as ‘the measurement problem’ it is widely seen as the major complication in quantum theory and has led even well-respected scientists to suggest that the human mind may be having some kind of telepathic influence on the fabric of the universe — our thoughts actually shaping reality around us.

But physicist Jonathan Kerr, who has studied quantum mechanics for 35 years from his cottage in Surrey, believes he has solved the riddle, and the answer is more prosaic than some might have hoped.

In 2018, the U.S. Defense Advanced Research Projects Agency (DARPA) announced the multi-million-dollar DARPA Launch Challenge to promote rapid access to space within days rather than years. To earn prizes totaling more than US $12 million, rocket companies would have to launch unfamiliar satellites from two sites in quick succession.

“The launch environment of tomorrow will more closely resemble that of airline operations—with frequent launches from a myriad of locations worldwide,” said Todd Master, DARPA’s program manager for the competition at the time. The U.S. military relies on space-based systems for much of its navigation and surveillance needs, and wants a way to quickly replace damaged or destroyed satellites in the future. At the moment, it takes at least three years to build, test, and launch spacecraft.

To ensure that DARPA was incentivizing the flexible, responsive launch technologies the U.S. military needs, competitors would receive information about the site of their next launch fewer than 30 days prior to each flight, DARPA’s rules stated, and only learn their actual payloads two weeks out.

“A new model based on the blood-vessel network in a rat brain shows that the vessel position within its circulatory network does not influence the blood flow nor how nutrients are transported. Instead, transport is controlled mostly by the dilation of vessels. As well as providing new insights into the circulatory system, the model could lead to better artificial tissues and brain-scanning techniques – and might even improve the performance of solar panels.”

Nutrient flow in the brain is controlled by blood-vessel dilation, reveals network model

If you enjoyed this article, please like and follow our Facebook page for the latest news on neuroscience, psychology, and artificial intelligence:

https://www.facebook.com/The-Neuro-Network-383136302314720/


No matter how cheap or fast paid internet service gets, the Internet of Things (IOT) won’t take wings until we have ubiquitous access to a completely decentralized, open-standard network that does not require a provider subscription. This month, we may be a step closer.

Let’s talk about internet connected gadgets. Not just your phone or PC—and not even a microwave oven or light bulb. Instead, think of everyday objects that are much smaller and much less expensive. Think of things that seemingly have no need to talk with you.

Now think of applications in which these tiny things need to communicate with each other and not just with you. Think of the cost of this “thing” compared to the added cost of continuous communications. Do so many things really need to talk in the first place?