Toggle light / dark theme

Human stem cells have successfully been converted into cells that are capable of producing insulin by a team of researchers from the Washington University School of Medicine; the insulin producing cells were able to control blood sugar levels in experiments with diabetic mice.

“These mice had very severe diabetes with blood sugar readings of more than 500 milligrams per deciliter of blood — levels that could be fatal for a person — and when we gave the mice the insulin-secreting cells, within two weeks their blood glucose levels had returned to normal and stayed that way for many months,” lead researcher Jeffrey Millman, assistant professor at Washington University, said in a statement.

The research was described in the journal Nature Biotechnology and it builds upon previous work in which the researchers developed the insulin producing cells out of human stem cells but were not able to demonstrate effectiveness in animal models until now.

What happens to people who suffer severe injuries that make it impossible for them to communicate? They are often left at the mercy of doctors and families who are obligated to make vital decisions for them. According to New Scientist, however, now there are new mind-reading brain scanners that may remedy this situation.


The new scanners use functional near-infrared spectroscopy.

Baltimore, MD— They say a picture is worth 1,000 words. But what about a real-time window into the complexity of the gastrointestinal system?

A new research tool allowed biologists to watch in real time the cell renewal process that keeps gut tissue healthy, as well as the interactions between bacterial species that make up the microbiome. Their work, led by Lucy O’Brien and KC Huang of Stanford University and Carnegie’s Will Ludington, was recently published by PLOS Biology.

The system, dubbed Bellymount, allowed researchers to peer into the live tissue of the fruit fly gut and better understand the many complex, overlapping processes occurring there.

That then immediately leads me to ask — given the theoretical properties of the Higgs Boson, are there any proposed ideas for creating a propulsion mechanism from it?

If the Higgs field imparts mass, could it be used to cancel out mass, or lighten it somehow? Could an anti-Higgs field be created?

I’d once read about the possibility of next-generation muon-colliders, and how they could be turned into “Higgs factories”. Could such colliders conceivably be used for a conjectured Higgs propulsion system?

O.o circa 2016.


Keio J Med. 2016;65:21. doi: 10.2302/kjm.65–001-ABST.

Rapid growing cells like tumor cells need a vast amount of energy to match their high metabolic demand. Guanine triphosphate (GTP) is one of major cellular metabolites and served as a building block for RNA and DNA as well as an energy source to drive cellular activities such as intracellular trafficking, the cell migration and translation. However, how cancer cells regulate GTP energy levels to adapt for their high demand remain largely unknown yet. In addition, how cells detect GTP levels remains unknown. In this seminar, I will introduce our recent findings that uncover dramatic change of GTP metabolism in cancer cells and a GTP sensing kinase that regulate metabolism for tumorigenesis.(Presented at the 1918th Meeting, March 3, 2016).

In 2016, the European Space Agency announced a call for medium-size missions within their Cosmic Vision Program. In layman’s terms, “medium-size” means moderate-cost (less than 550 million euros, or $610 million) and low-risk, and this is achieved by keeping payloads small and by using proven, heritage technology for both spacecraft and payload. Alongside these common-sense conditions is a third and less tangible quality, that the project be scientifically robust. But when comparing excellent cases from vastly different fields, the merits of one scientific mission over another can seem subjective. It’s not enough to lament the dearth of data in said field, or to establish how a project will discover this or that, or even to show exactly how said “groundbreaking technology” will work. ESA wants a mission that will stir up an unprecedented level of excitement, support, and interest within the scientific community. Here is how they attempt to measure a project’s relevance.

“Each member state has a representative in the Science Programme Committee, and it’s their duty to define the content of the program,” said Luigi Colangeli, head of ESA’s Science Coordination Office. “Study groups work with the various proposals to arrive at something that is compatible with the boundary conditions, in this case, of a M-5, or medium-class mission. Right now, we are studying the evolution of the three missions. And then next year we will put together a peer review panel, who will analyze the three candidates and recommend the best selection to our Director of Science.”

Since the call went out four years ago, ESA have been whittling down proposals, from 25 at the beginning to only three now: Envision, Theseus, or SPICA. In February the EnVision conference took place at the National Centre for Space Studies (CNES) in Paris. EnVision is a low-altitude polar orbiter that is meant to perform high-resolution radar mapping, surface composition, and atmospheric studies of Venus. The purpose of the meeting was to call the Venus community to attention, because the clock is ticking. Consortium members, ESA representatives, and interested scientists from all over the world were in attendance.