Why we should look in caves for life, especially on Mars. For more info, see my new blog on BigThink with Link on:
Posted on Big Think.
Why we should look in caves for life, especially on Mars. For more info, see my new blog on BigThink with Link on:
Posted on Big Think.
Leonard Rome’s lab discovered an odd, abundant component of cells in the 1980s—and he’s still trying to figure out what it does.
Understanding the molecular changes underlying aging is important for developing biomarkers and healthy aging interventions. In this study, the authors used comprehensive multi-omics data to reveal nonlinear molecular profiles across chronological ages, highlighting two substantial variations observed around ages 40 and 60, which are linked to increased disease risks.
The US National Institute of Standards and Technology has released Federal Information Processing Standards (FIPS) publications for three quantum-resistant cryptographic algorithms.
In a landmark announcement, the National Institute of Standards and Technology (NIST) has published its first set of post-quantum cryptography (PQC) standards. This announcement serves as an inflection point in modern cybersecurity: as the global benchmark for cryptography, the NIST standards signal to enterprises, government agencies, and supply chain vendors that the time has come to make the world’s information security systems resistant to future cryptographically relevant quantum computers.
NIST released FIPS publications for three quantum-resistant cryptographic algorithms.
“Asteroids are leftovers from the planetary formation process, so their compositions vary depending on where they formed in the solar nebula,” said Dr. Anicia Arredondo. “Hydration that is endogenous could suggest that Psyche is not the remnant core of a protoplanet.”
Could a metallic asteroid contain water and what can this teach us about the asteroid’s formation and evolution? This is what a recent study due for publication in the Planetary Science Journal hopes to address as a team of researchers led by the Southwest Research Institute (SwRI) investigated whether the metallic asteroid Psyche —which is one of the largest objects in the main asteroid belt—could contain evidence of water and hydration.
This study holds the potential to help scientists better understand the formation and evolution of asteroids and what this can teach us about the history of the solar system. This study also comes as NASA’s Psyche spacecraft is currently en route to the Psyche asteroid and is scheduled to arrive in August 2029.
For the study, the researchers used NASA’s powerful James Webb Space Telescope to observe the 140-mile diameter asteroid, which detected evidence of what are known as hydroxyl molecules, or molecules containing bonded hydrogen and oxygen, and specifically identified traces of water, more commonly known as H2O in its molecular form. Now, the question arises as to if the water got there from exogenous (external) or endogenous (internal) processes.
US findings suggesting ageing is not a slow and steady process could explain spikes in health issues at certain ages.
“This is going to be the fastest AI computer ever launched to space,” Yanni Barghouty, CSC’s cofounder and CEO, told Space.com. “The goal of this mission is simply to demonstrate the successful operation of an AI-capable Nvidia GPU on orbit with minimal to no errors while operating.”
The GPU will fly aboard a cubesat built by San Francisco-based company Aethero, a maker of high-performance, space-rated computers. The GPU’s only task during its four-month orbital mission will be to make mathematical calculations, the results of which will be beamed to Earth and carefully checked.
Scientists have found a hidden ocean on Mars. It is a reservoir of liquid water deep in Mar…
Even the best AI large language models (LLMs) fail dramatically when it comes to simple logical questions. This is the conclusion of researchers from the Jülich Supercomputing Center (JSC), the School of Electrical and Electronic Engineering at the University of Bristol and the LAION AI laboratory.
In their paper posted to the arXiv preprint server, titled “Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models,” the scientists attest to a “dramatic breakdown of function and reasoning capabilities” in the tested state-of-the-art LLMs and suggest that although language models have the latent ability to perform basic reasoning, they cannot access it robustly and consistently.
The authors of the study—Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti and Jenia Jitsev—call on “the scientific and technological community to stimulate urgent re-assessment of the claimed capabilities of the current generation of LLMs.” They also call for the development of standardized benchmarks to uncover weaknesses in language models related to basic reasoning capabilities, as current tests have apparently failed to reveal this serious failure.