Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

A technique to estimate emotional valence and arousal

In recent years, countless computer scientists worldwide have been developing deep neural network-based models that can predict people’s emotions based on their facial expressions. Most of the models developed so far, however, merely detect primary emotional states such as anger, happiness and sadness, rather than more subtle aspects of human emotion.

Past psychology research, on the other hand, has delineated numerous dimensions of emotion, for instance, introducing measures such as valence (i.e., how positive an emotional display is) and arousal (i.e., how calm or excited someone is while expressing an emotion). While estimating valence and arousal simply by looking at people’s faces is easy for most humans, it can be challenging for machines.

Researchers at Samsung AI and Imperial College London have recently developed a deep-neural-network-based system that can estimate emotional valence and arousal with high levels of accuracy simply by analyzing images of human faces taken in everyday settings. This model, presented in a paper published in Nature Machine Intelligence, can make predictions fairly quickly, which means that it could be used to detect subtle qualities of emotion in real time (e.g., from snapshots of CCTV cameras).

SpaceX may finally launch its newest Starship rocket prototype Tuesday afternoon. With any luck, it won’t explode

On Tuesday, SpaceX plans to launch the latest prototype of its Starship spacecraft — a system that could one day carry humans to Mars. The prototype, called.


The first time SpaceX attempted such an ambitious Starship flight, the 16-story vehicle blew up. Seven weeks later, Elon Musk’s company is trying again.

A Physicist Has Worked Out The Math That Makes ‘Paradox-Free’ Time Travel Plausible

No one has yet managed to travel through time – at least to our knowledge – but the question of whether or not such a feat would be theoretically possible continues to fascinate scientists.

As movies such as The Terminator, Donnie Darko, Back to the Future and many others show, moving around in time creates a lot of problems for the fundamental rules of the Universe: if you go back in time and stop your parents from meeting, for instance, how can you possibly exist in order to go back in time in the first place?

It’s a monumental head-scratcher known as the ‘grandfather paradox’, but in September last year a physics student Germain Tobar, from the University of Queensland in Australia, said he has worked out how to “square the numbers” to make time travel viable without the paradoxes.

Stomach Implant Tells Your Brain You’re Not Hungry

A tiny implant offers a new weight loss option, and a gastric bypass alternative, for people suffering from obesity.

The device uses light to stimulate the nerve responsible for regulating food intake. A tiny glow from the implant and users don’t feel as hungry — instead, they feel full.

Researchers at Texas A&M say that this dime-sized device could provide a far less invasive surgical option than the so-called stomach stapling surgery — which is currently a last resort surgery for obese patients. This could be a viable option for a gastric bypass alternative.

Sophia Robot Makers’ Mass Rollout Plan Signals Rise in Robotics

Automation ‘to keep people safe’

Hong Kong-based Hanson Robotics said four models, including Sophia will start to be mass produced in the first half of 2021.

This coincides with a rise in automation documented worldwide as robotics technologies are used to allow everyday tasks to be carried out amidst social distancing restrictions.… See More.


Hanson Robotics plans to sell its famous robot amidst increased automation linked to the pandemic.

Brain-to-brain communication demo receives DARPA funding

HOUSTON — (Jan. 252021) — Wireless communication directly between brains is one step closer to reality thanks to $8 million in Department of Defense follow-up funding for Rice University neuroengineers.

The Defense Advanced Research Projects Agency (DARPA), which funded the team’s proof-of-principle research toward a wireless brain link in 2018, has asked for a preclinical demonstration of the technology that could set the stage for human tests as early as 2022.

“We started this in a very exploratory phase,” said Rice’s Jacob Robinson, lead investigator on the MOANA Project, which ultimately hopes to create a dual-function, wireless headset capable of both “reading” and “writing” brain activity to help restore lost sensory function, all without the need for surgery.