Toggle light / dark theme

You know the scene in “Akira” where Tetsuo rips a satellite space weapon out of orbit?

Now the U.S. military wants to try something similar, according to Defense One. The Pentagon is requesting hundreds of millions of dollars to ramp up space-based weaponry including particle beams and space lasers that’ll fire downward at Earthly targets — a dark vision of the militarization of space.

Focus is on Physical Sciences Research and Management of Complex Systems

WASHINGTON, D.C. — Today, the U.S. Department of Energy (DOE) announced a plan to provide up to $30 million for advanced research in machine learning (ML) and artificial intelligence (AI) for both scientific investigation and the management of complex systems.

The initiative encompasses two separate topic areas. One topic is focused on the development of ML and AI for predictive modeling and simulation focused on research across the physical sciences. ML and AI are thought to offer promising new alternatives to traditional programming methods for computer modeling and simulation.

Replicating human interaction and behavior is what artificial intelligence has always been about. In recent times, the peak of technology has well and truly surpassed what was initially thought possible, with countless examples of the prolific nature of AI and other technologies solving problems around the world.

Think about this: Gary Kasparov stated that he would never lose a game of chess to a computer. For a long time, this seemed like a statement that would withstand all tests.

Roll on 1996, however, and IBM developed Deep Blue, a computer bot/program/application that beat the master Gary Kasparov at his own game.

This is a solid interview on core Transhumanist topics.


My interview with Anders Sandberg, a prominent transhumanist thinker and research fellow at the Future of Humanity Institute at Oxford University. We discuss how the transhumanist movement has changed, how it should engage in politics, whether pre-natural death cryogenics should be allowed and how long humans could live for amongst other things. Hope you enjoy!

All Guest Author Posts are submitted or additional content Chronicle has added to the website. To be a Guest Author please visit our “Post Your Article” page.

Rydberg atoms, which are atoms in a highly excited state, have several unique and advantageous properties, including a particularly long lifetime and large sensitivities to external fields. These properties make them valuable for a variety of applications, for instance for the development of quantum technologies.

In order for Rydberg atoms to be effectively used in quantum technology, however, researchers first need to be able to trap them. While a number of studies have demonstrated the trapping of Rydberg atoms using magnetic, electric, or , the trapping times achieved so far have been relatively short, typically around 100μs.

Researchers at Laboratoire Kastler Brossel (LKB) have recently achieved a longer 2-D laser trapping time of circular Rydberg atoms of up to 10 ms. The method they employed, outlined in a paper published in Physical Review Letters, could open up exciting new possibilities for the development of .