Toggle light / dark theme

Despite the huge contributions of deep learning to the field of artificial intelligence, there’s something very wrong with it: It requires huge amounts of data. This is one thing that both the pioneers and critics of deep learning agree on. In fact, deep learning didn’t emerge as the leading AI technique until a few years ago because of the limited availability of useful data and the shortage of computing power to process that data.

Reducing the data-dependency of deep learning is currently among the top priorities of AI researchers.

In his keynote speech at the AAAI conference, computer scientist Yann LeCun discussed the limits of current deep learning techniques and presented the blueprint for “self-supervised learning,” his roadmap to solve deep learning’s data problem. LeCun is one of the godfathers of deep learning and the inventor of convolutional neural networks (CNN), one of the key elements that have spurred a revolution in artificial intelligence in the past decade.

Accelerating electrons to such high energies in a laboratory setting, however, is challenging: typically, the more energetic the electrons, the bigger the particle . For instance, to discover the Higgs boson—the recently observed “God particle,” responsible for mass in the universe—scientists at the CERN laboratory in Switzerland used a particle accelerator nearly 17 miles long.

But what if there was a way to scale down , producing high-energy electrons in a fraction of the distance?

After years in the making, the Marine Corps has finally started fielding next-generation body armor to lighten the load for grunts in the field.

The new lightweight protective vest, known as the Plate Carrier Generation III, is designed to provide additional protection from shrapnel and other fragmentation for Marines, according to a statement from Marine Corps Systems Command.

More importantly, the new system is 25 percent lighter than the Corps’ existing plate carrier, providing a smaller footprint in terms of the load a grunt has to haul and in turn reducing fatigue and improving operational capability while maintaining a similar level of protection.

O,.,o.


Physicists have conducted the most high-energy test of the speed of light yet, and found that it is still constant, everywhere in the Universe, even in gamma rays spewed out of sources such as exploding stars.

This means that, even at the highest energies we can detect, one of the pillars of Albert Einstein’s theory of special relativity still stands firm.

“How relativity behaves at very high energies has real consequences for the world around us,” said astrophysicist Pat Harding of Los Alamos National Laboratory in New Mexico.