Toggle light / dark theme

Since its beginnings, quantum mechanics hasn’t ceased to amaze us with its peculiarity, so difficult to understand. Why does one particle seem to pass through two slits simultaneously? Why, instead of specific predictions, can we only talk about evolution of probabilities? According to theorists from universities in Warsaw and Oxford, the most important features of the quantum world may result from the special theory of relativity, which until now seemed to have little to do with quantum mechanics.

Since the arrival of and the theory of relativity, physicists have lost sleep over the incompatibility of these three concepts (three, since there are two theories of relativity: special and general). It has commonly been accepted that it is the description of quantum mechanics that is the more fundamental and that the theory of relativity that will have to be adjusted to it. Dr. Andrzej Dragan from the Faculty of Physics, University of Warsaw (FUW) and Prof. Artur Ekert from the University of Oxford (UO) have just presented their reasoning leading to a different conclusion. In the article “The Quantum Principle of Relativity,” published in the New Journal of Physics, they prove that the features of quantum mechanics determining its uniqueness and its non-intuitive exoticism—accepted, what’s more, on faith (as axioms)—can be explained within the framework of the . One only has to decide on a certain rather unorthodox step.

Albert Einstein based the special theory of relativity on two postulates. The first is known as the Galilean principle of relativity (which, please note, is a special case of the Copernican principle). This states that physics is the same in every inertial system (i.e., one that is either at rest or in a steady straight line motion). The second postulate, formulated on the result of the famous Michelson-Morley experiment, imposed the requirement of a constant velocity of light in every reference system.

D-Wave, the Canadian quantum computing company, today announced that it is giving anyone who is working on responses to the COVID-19 free access to its Leap 2 quantum computing cloud service. The offer isn’t only valid to those focusing on new drugs but open to any research or team working on any aspect of how to solve the current crisis, be that logistics, modeling the spread of the virus or working on novel diagnostics.

One thing that makes the D-Wave program unique is that the company also managed to pull in a number of partners that are already working with it on other projects. These include Volkswagen, DENSO, Jülich Supercomputing Centre, MDR, Menten AI, Sigma-i Tohoku University, Ludwig Maximilian University and OTI Lumionics. These partners will provide engineering expertise to teams that are using Leap 2 for developing solutions to the Covid-19 crisis.

As D-Wave CEO Alan Baratz told me, this project started taking shape about a week and a half ago. In our conversation, he stressed that teams working with Leap 2 will get a commercial license, so there is no need to open source their solutions and won’t have a one-minute per month limit, which are typically the standard restrictions for using D-Wave’s cloud service.

200+ user-developed early quantum applications on D-Wave systems, including airline scheduling, election modeling, quantum chemistry simulation, automotive design, preventative healthcare, logistics, and much more.

Governments across the world are relying on mathematical projections to help guide decisions in this pandemic. Computer simulations account for only a fraction of the data analyses that modelling teams have performed in the crisis, Ferguson notes, but they are an increasingly important part of policymaking. But, as he and other modellers warn, much information about how SARS-CoV-2 spreads is still unknown and must be estimated or assumed — and that limits the precision of forecasts. An earlier version of the Imperial model, for instance, estimated that SARS-CoV-2 would be about as severe as influenza in necessitating the hospitalization of those infected. That turned out to be incorrect.


How epidemiologists rushed to model the coronavirus pandemic.

Ai-Da is the world’s first ultra-realistic artist robot powered by AI and named after Ada Lovelace, the first female computer programmer in the world. She is a humanoid with human facial features and a robotic body created by the Oxfordians, a group of cutting-edge art and technology experts. Embedded with a groundbreaking algorithm, she has taken the scientific and art world by surprise, now becoming an intense subject of conversation in over 900 publications worldwide. She has already collaborated with Tate Exchange and WIRED at the Barbican, Ars Electronica, and will be performing at the Louvre Abu-Dhabi later this year.


Here, she discusses what it means to identify as a creative without a consciousness with Futurist Geraldine Wharry.

This is the first reported case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy. As the number of patients with COVID-19 increases worldwide, clinicians and radiologists should be watching for this presentation among patients presenting with COVID-19 and altered mental status.


Home Radiology Recently Published PreviousNext Reviews and CommentaryFree AccessImages in Radiology COVID-19–associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI FeaturesNeo Poyiadji, Gassan Shahin, Daniel Noujaim, Michael Stone, Suresh Patel, Brent Griffith Neo Poyiadji, Gassan S…