Toggle light / dark theme

Freeze laser.


We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\overline{n}=0.13$ after sideband cooling, corresponding to a ground-state occupation probability of 88%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the $|n=0⟩$ and $|n=1⟩$ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

Compressing simple molecular solids with hydrogen at extremely high pressures, University of Rochester engineers and physicists have, for the first time, created material that is superconducting at room temperature.

Featured as the cover story in the journal Nature, the work was conducted by the lab of Ranga Dias, an assistant professor of physics and mechanical engineering.

Dias says developing materials that are superconducting—without electrical resistance and expulsion of magnetic field at room temperature—is the “holy grail” of condensed matter physics. Sought for more than a century, such materials “can definitely change the world as we know it,” Dias says.

Hydroelectric power Productions
🔔 Thanks for watching my videos, enjoy, and subscribe for more interesting daily videos!

In this video, Production here:
Turbulent Hydro
www.turbulent.be

KapaLamda
www.KCTHydropower.com

Waterotor Energy
https://waterotor.com

Landustrie
https://www.landustrie.nl/en/home.html

Dezeen

Robots for artists. 😃


What if you could instruct a swarm of robots to paint a picture? The concept may sound far-fetched, but a recent study in open-access journal Frontiers in Robotics and AI has shown that it is possible. The robots in question move about a canvas leaving color trails in their wake, and in a first for robot-created art, an artist can select areas of the canvas to be painted a certain color and the robot team will oblige in real time. The technique illustrates the potential of robotics in creating art, and could be an interesting tool for artists.

Creating art can be labor-intensive and an epic struggle. Just ask Michelangelo about the Sistine Chapel ceiling. For a world increasingly dominated by technology and automation, creating physical art has remained a largely manual pursuit, with brushes and chisels still in common use. There’s nothing wrong with this, but what if robotics could lend a helping hand or even expand our creative repertoire?

“The intersection between robotics and art has become an active area of study where artists and researchers combine creativity and systematic thinking to push the boundaries of different art forms,” said Dr. María Santos of the Georgia Institute of Technology. “However, the artistic possibilities of multi– are yet to be explored in depth.”

Robots are now assisting in advancing developmental biology.


The study of developmental biology is getting a robotic helping hand.

Scientists are using a custom robot to survey how mutations in regulatory regions of the genome affect animal development. These regions aren’t genes, but rather stretches of DNA called enhancers that determine how genes are turned on and off during development. The team describes the findings—and the robot itself—on October 14 in the journal Nature.

“The real star is this robot,” says David Stern, a group leader at HHMI’s Janelia Research Campus. “It was extremely creative engineering.”

Circa 2016


Scientists have developed a novel system that recovers energy normally lost in industrial processes.

Each year, energy that equates to billions of barrels of oil is wasted as heat lost from machines and industrial processes. Recovering this energy could reduce energy costs. Scientists from Australia and Malaysia have developed a novel system that is designed to maximize such recovery.

Heat can be converted to electricity by devices called thermoelectric power generators (TEGs), which are made of thermoelectric materials that generate electricity when heat passes through them. Previous studies have attempted to use TEGs to recover energy from the heat generated by, for example, car engines, woodstoves and refrigerators. However, TEGs can only convert a small amount of the heat supplied to them, and the rest is emitted as heat from their “cold” side. No previous studies have attempted to recover energy from the waste heat that has already passed through TEGs. Researchers from Malaysia’s Universiti Teknologi MARA and RMIT University in Australia set out to develop a system that can do this.