Menu

Blog

Page 8055

Dec 5, 2019

1st Ebola vaccine clinical study in Japan to begin this month

Posted by in category: biotech/medical

A team of University of Tokyo researchers said Thursday it will begin a clinical study later this month on a vaccine for the Ebola virus, a first in Japan, with the vaccine developed using an artificially produced detoxified virus.

The new vaccine developed by Yoshihiro Kawaoka, a professor at the university’s Institute of Medical Science, and others is believed to have fewer side effects compared to those produced abroad, according to the institute.

The researchers said they aim to develop the Ebola vaccine to prevent further outbreaks of the deadly hemorrhagic fever in Africa.

Dec 5, 2019

Researchers achieve quantum control of an oscillator using a Josephson circuit

Posted by in categories: computing, quantum physics

Superconducting circuits, which have zero electrical resistance, could enable the development of electronic components that are significantly more energy-efficient than most chips used today. Importantly, superconducting circuits rely on an electronic element known as the Josephson junction, which allows them to manipulate quantum information and mediate photon interactions. While past studies have tried to enhance the performance and coherence of Josephson circuits, so far, the most promising results in terms of photon lifetimes were achieved in microwave cavities.

A team of researchers at Princeton University, Northwestern University and the University of Chicago have directly operated an oscillator using a stimulated Josephson nonlinearity. In their paper, published in Nature Physics, the team achieved quantum control of an oscillator by operating it as an isolated two-level system, tailoring its Hilbert space.

“Our research was motivated by the ongoing effort in the superconducting circuits community to engineer highly coherent qubits for quantum information,” Prof. Andrew Houck, one of the researchers who carried out the study, told Phys.org. “There has been enormous progress in designing linear microwave resonators that can outperform the coherence of conventional superconducting qubits.”

Dec 5, 2019

Concussions Damage the ‘Bridge’ Between the Two Halves of the Brain

Posted by in category: neuroscience

The bridge between both halves of the brain fundamentally changes after concussion.

Dec 5, 2019

Scientists discover a new and unusual volcano

Posted by in category: futurism

Scientists have found a new example of a recently discovered type of volcano called a “petit-spot.”

Dec 5, 2019

The universe tends towards disorder. But how come nobody knows why?

Posted by in categories: cosmology, quantum physics

Entropy is the physicist’s magic word, invoked to answer to some of the biggest questions in cosmology. Yet a quantum rethink may be needed to tell us what it actually is.

Dec 5, 2019

Viewpoint: A Whole Surface of Exceptional Points

Posted by in categories: energy, physics

Researchers fabricated a cavity device with a large number of “exceptional points,” which are modes that exhibit exotic phenomena, such as extreme sensitivity to external parameters.

One of the fundamental laws of physics is that energy is conserved, but many local physical systems—seen in isolation—gain or lose energy. For example, a light bulb converts electrical power into radiation, which from the perspective of the electrical circuit is a loss of energy. By contrast, a light beam gains energy as it passes through an amplifying medium. Although one can model the inputs and outputs, it’s often mathematically simpler to just treat energy as a locally nonconserved quantity. Nonconservative systems, referred to as non-Hermitian, have attracted a great deal of interest because they can exhibit potentially useful phenomena, such as enhanced sensing [1] and robust single-mode lasing [2]. These phenomena are intimately related to the ability of non-Hermitian systems to support exceptional points, a type of degeneracy in which two or more modes suddenly coalesce into one (Fig. 1).

Dec 5, 2019

Developer Economics Survey | Developer tools, apps, design, games

Posted by in categories: augmented reality, economics, virtual reality

Take the Developer Economics Survey and win prizes!


The Developer Economics survey is run by independent analyst firm /Data, reaching over 40,000+ developers in 167 countries annually. It is for Software developers: professionals, hobbyists & students, working across all major areas: mobile, web, desktop, cloud, IoT, AR/VR, games, ML & data science.

Dec 5, 2019

Nevada toys with 1 GW of storage by 2030

Posted by in categories: business, energy, policy

In what has been a crazy year for Nevada, the Public Utilities Commission is ending on an equally crzay note, proposing 1 GW of energy storage to be deployed across the state by the last day of 2030.

Dec 5, 2019

MIT creates an AI that understands the laws of physics intuitively

Posted by in categories: physics, robotics/AI

The system could allow scientsts to better understand how infants perceive the world.

Dec 5, 2019

Scientists have found out why photons from other galaxies do not reach Earth

Posted by in categories: computing, mathematics, particle physics, space

An international group of scientists, including Andrey Savelyev, associate professor of the Institute of Physical and Mathematical Sciences and Information Technologies of the IKBFU, has improved a computer program that helps simulate the behavior of photons when interacting with hydrogen spilled in intergalactic space. Results are published in the scientific journal Monthly Notices of the Royal Astronomical Society.

Andrey Saveliev states, “In the Universe there are extragalactic objects such as blazars, which very intensively generate a powerful gamma-ray flux, part of photons from this stream reaches the Earth, as they say, directly, and part are converted along the way into electrons, then again converted into photons and only then get to us. The problem here is that say that a certain number of photons should reach the Earth, and in fact it is much less.”

Scientists, according to Andrey Savelyev, today have two versions of why this happens. The first is that a , after being converted into an electron (and this, as is known, in contrast to a neutral photon, a charged particle) falls into a , deviates from its path and does not reach the Earth, even after being transformed again into the photon.