Toggle light / dark theme

The future of space exploration is beyond imagination! From SpaceX Starship to NASA’s Artemis II, groundbreaking innovations are shaping the 2050 future world. In this video, we dive into amazing inventions you must see, including space elevators, nuclear-powered rockets, and space mining that could redefine our existence beyond Earth.

🌍 Explore the most futuristic and emerging technologies revolutionizing space travel, space stations, and massive satellite internet in outer space. Will Space-Based Solar Power solve Earth’s energy crisis? Could O’Neill Cylinders and Alderson Disks become the future of human colonies in space?

🔍 Get a detailed review of the latest advancements from SpaceX, NASA, ESA, and other space agencies working on secretive space planes and cutting-edge space habitats like Haven-2 Module and Eos-X Space.

💡 Topics Covered:

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Artificial Intelligence is not just an engineering discipline, but also a philosophical project, aimed at the naturalization of the mind. By allowing to build testable models, AI offers a metaphysical framework and a methodology for defining and exploring mental representations, perception, agency, self modeling, attention and systemic models of psychology. At the same time, very little practical AI research is concerned with understanding consciousness and the mind. Starting from the epistemological position of computationalist functionalism, we will discuss the phenomenology of consciousness (especially second order perception and \.

Researchers discovered how Floquet Majorana fermions can improve quantum computing by controlling superconducting currents, potentially reducing errors and increasing stability. A new study has revealed significant insights into the behavior of electric current flow in superconductors, which could contribute to advancements in controlled quantum information processing.

Genome Instability and Disease Risk

Every time a cell divides, its DNA is at risk of damage. To complete division, the cell must copy its entire genetic code — billions of letters long — which can lead to occasional errors. But cell division isn’t the only threat. Over time, exposure to factors like sunlight, alcohol, and cigarette smoke can also harm DNA, increasing the risk of cancer and other diseases.

Fortunately, cells have built-in repair systems to counteract this damage. This process, known as the DNA damage response (DDR), activates specific signaling pathways that detect and fix errors. These mechanisms help maintain genetic stability and ensure the cell’s survival.

Although Navier–Stokes equations are the foundation of modern hydrodynamics, adapting them to quantum systems has so far been a major challenge. Researchers from the Faculty of Physics at the University of Warsaw, Maciej Łebek, M.Sc. and Miłosz Panfil, Ph.D., Prof., have shown that these equations can be generalized to quantum systems, specifically quantum liquids, in which the motion of particles is restricted to one dimension.

This discovery opens up new avenues for research into transport in one-dimensional quantum systems. The resulting paper, published in Physical Review Letters, was awarded an Editors’ Suggestion.

Liquids are among the basic states of matter and play a key role in nature and technology. The equations of hydrodynamics, known as the Navier–Stokes equations, describe their motion and interactions with the environment. Solutions to these equations allow us to predict the behavior of fluids under various conditions, from the and the in blood vessels, to the dynamics of quark-gluon plasma on subatomic scales.

Two experiment collaborations, the g2p and EG4 collaborations, combined their complementary data on the proton’s inner structure to improve calculations of a phenomenon in atomic physics known as the hyperfine splitting of hydrogen. An atom of hydrogen is made up of an electron orbiting a proton.

The overall energy level of depends on the spin orientation of the proton and electron. If one is up and one is down, the atom will be in its lowest energy state. But if the spins of these particles are the same, the energy level of the atom will increase by a small, or hyperfine, amount. These spin-born differences in the energy level of an atom are known as hyperfine splitting.

While it’s commonplace for many scientists to collaborate on nuclear physics experiments at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, it’s rarer for the lab’s individual experiments to collaborate with each other. But that’s exactly what g2p in Jefferson Lab’s Experimental Hall A and EG4 in Experimental Hall B did.

Researchers have developed a high-speed electro-optic switch that is energy-efficient, has low crosstalk and works across a broad bandwidth. Made using a scalable, chip-friendly process, this switch could enhance data capacity in optical networks and data centers by improving signal routing and switching.

Jinwei Su from the Shanghai Jiao Tong University in China will present this research at Optical Fiber Communications Conference and Exhibition (OFC), the global event for and networking, which will take place 30 March–3 April 2025 at the Moscone Center in San Francisco.

As artificial intelligence and cloud computing rapidly advance, the demand for high-capacity data exchange continues to rise. Optical switching, with its broad bandwidth and low latency, is emerging as one of the most promising solutions to address this challenge. To achieve nanosecond-scale , the researchers fabricated a 2×2 cascaded electro-optic switch by micro-transfer printing pre-etched thin-film lithium niobate (TFLN) onto .