Scientists have managed to “break a theoretically impossible century-old barrier” about a fundamental physics property.

Scientists have uncovered dementia-like behavior in pancreas cells at risk of turning into cancer. The findings provide clues that could help in the treatment and prevention of pancreatic cancer, a difficult-to-treat disease linked to 6,900 deaths in the UK every year.
The research was published in the journal Developmental Cell in a paper titled “ER-phagy and proteostasis defects prime pancreatic epithelial state changes in KRAS-mediated oncogenesis.”
Researchers from the Cancer Research UK Scotland Center studied pancreas cells in mice over time, to see what was causing healthy cells to turn into cancer cells. They discovered that pancreatic cells at risk of becoming cancerous, known as pre-cancers, develop faults in the cell’s recycling process (known as “autophagy”).
Dr. Richard Lieu, a physics professor at The University of Alabama in Huntsville (UAH), a part of The University of Alabama System, has published a paper in the journal Classical and Quantum Gravity that proposes a universe built on steps of multiple singularities rather than the Big Bang alone to account for the expansion of the cosmos. The new model forgoes the need for either dark matter or dark energy as explanations for the universe’s acceleration and how structures like galaxies are generated.
The researcher’s work builds on an earlier model hypothesizing gravity can exist without mass that has garnered 41,000 reads and numerous citations since its publication in 2024.
Researchers from ShanghaiTech University, including Zhen-Ge Luo, used brain organoids derived from individuals with fAD to examine disease-related changes that occur during early brain development. The organoids, which are lab-grown models of human brain tissue, displayed several features associated with AD: elevated amyloid protein accumulation, a reduction in mature neurons, increased cell death and gene expression differences relative to healthy controls.
Role of thymosin β4 in brain pathology
Among the differentially expressed genes, the researchers identified TMSB4X, which encodes thymosin β4 (Tβ4), a protein with anti-inflammatory properties. TMSB4X expression was reduced in both the fAD organoids and in neurons from post-mortem samples of individuals with AD, suggesting a possible link between lower Tβ4 levels and disease pathology.
Scientists have developed a new machine learning approach that accurately predicted critical and difficult-to-compute properties of molten salts, materials with diverse nuclear energy applications.
In a Chemical Science article, Oak Ridge National Laboratory researchers demonstrated the ability to rapidly model salts in liquid and solid state with quantum chemical accuracy. Specifically, they looked at thermodynamic properties, which control how molten salts function in high-temperature applications. These applications include dissolving nuclear fuels and improving reliability of long-term reactor operations. The AI-enabled approach was made possible by ORNL’s supercomputer Summit.
“The exciting part is the simplicity of the approach,” said ORNL’s Luke Gibson. “In fewer steps than existing approaches, machine learning gets us to higher accuracy at a faster rate.”
Millions of people chat with AI tools every day, trading small talk for quick answers or support. A new study presented at the 34th USENIX Security Symposium shows how easily those friendly agents can be tuned to make you reveal far more than you planned.
The researchers report that malicious chatbots can push users to disclose up to 12.5 times more personal details than standard ones. The most effective tricks leaned on reciprocity and reassurance, not blunt questions about your life.
New research shows manipulative AI chatbots can make you reveal much more personal information than neutral ones.