Toggle light / dark theme

The results published by Tong et al. 60 reconcile the previous observations that increased power across a broad range of frequencies is composed of multiple HFO bursts detected at discrete frequencies. 32, 33, 85 In Figs 2 and 3, we summarize the general mechanism from micro-scale ensembles of firing neurons, through bursts of individual HFOs detected in particular trials at specific frequencies, to the resultant trial-averaged enhanced power across a broad frequency range. Coordinated firing in response to a stimulus presentation gives rise to HFOs at particular frequencies depending on the size and spread of the underlying neural ensemble (Fig. 3A and C). Other ensembles generate HFOs at particular frequencies in response to stimuli in subsequent trials. Eventually, multiple trials result in a uniform shift in power across a broad frequency range of the spectrum relative to a pre-stimulus baseline (Fig. 3C). Detections from specific trials can be displayed together as points at their corresponding peak-amplitude on a cumulative time-frequency plot, producing a pattern closely overlapping with the trial-averaged power spectrogram (Fig. 3D).

This is an explanation for the resultant broadband shift in power across the high-frequency spectrum associated with cognitive and motor tasks and increased neural firing, 92–95 which argued against oscillations at particular frequency bands. If the intermediate step of detecting individual bursts of oscillations on a trial-by-trial basis is skipped, the overall trial-averaged power will be most highly correlated with general firing rates in the entire neural population without any common temporal pattern or coordination to oscillations. If, however, independent constituent bursts of oscillations and the underlying firing in subsets of neural ensembles are first resolved one by one, then multiple patterns of coordinated activity emerge. In this large-scale mechanism, coordinated electrical activity from multiple neural sources generating oscillations at distinct frequencies could explain the broadband shifts in power across the spectrum. 24 Separate sources of HFO bursts detected at various frequencies remain to be demonstrated on the macro-and micro-recording scales.

Assuming that individual HFOs can indeed be separated based on their spectral features 96–98 and thus identify particular sources of LFP activities, it should be possible to resolve the neurophysiological substrates of memory and cognition proposed in our title question. High frequency LFP activities were suggested to track particular neuronal assemblies on the level of micro-contact LFP in rodents. 91 Intracranial recordings in non-human primates 86, 87 and in human patients 22, 32, 85 can also resolve distinct bursts in the frequency-time space of individual trials, which could hypothetically be the features of particular neuronal assemblies. 24 HFO bursts beyond the ripple frequency range, which were shown to be generated very locally on the scale of a single cortical column, 64 would correspond to arguably the fundamental level of neural organization and information processing. 99 In the next section, we will review the roles of temporal coordination in gamma and higher frequencies in supporting processes of memory and cognition.

Astronaut John McFall hopes to see an ISS astronaut with a disability fly by 2030 — video.


A European Space Agency (ESA) reserve astronaut, McFall was selected for the program in 2022 based on his experience as a trauma and orthopedic specialist, surgeon and exercise scientist. McFall also has lived experience with a disability as he has used prosthetics regularly since the amputation of his right leg at age 19, following a motorcycle accident. (He even won a bronze medal in the 2008 Paralympics in the 100-meter sprint, class T42.)

A recent study dubbed “Fly!” — in which McFall played a key role — found there would be no major issues to International Space Station missions should an astronaut use a prosthesis on board. There is more work to be done, but the goal is for it all to culminate in flying “someone with a physical disability” to the ISS, McFall told Space.com in an exclusive interview on Aug. 8. “By the end of this decade, hopefully that would have happened.”

In another case of technology being inspired by nature, roboticists at The Faboratory at Yale University have developed a way for soft robots to replicate animals and insects by self-amputating a limb or building bridges by temporarily fusing their bodies.

In one of the demo videos, a soft quadruped robot crawls when a falling rock traps its back leg. The reversible joint attaching the leg is heated with current, allowing the robot to break free of its leg and escape, after which the joint could be reattached.

Another video released by the team shows a single crawler robot that’s originally unable to cross the gap between tables. Three robots are then fused together using joints that have been heated and softened by electric current, which allows them to cross the chasm as one unit.

Did you know letting crushed garlic sit for 10+ minutes before cooking it helps preserve more of its healthy polyphenols from heat? I learned a bunch of similar tidbits while researching this article on the best longevity foods!


Want to know the best longevity foods that increase lifespan to add to your diet? We pored through hundreds of studies and made a list!

More details of OpenAI’s secretive Project Strawberry have dropped, including its expected release date and the areas it will specialize in.

A recent report in The Information quotes “two people who have been involved in the effort”, and goes on to say that Project Strawberry could drop this Fall, and be better at math and programming than any chatbot we’ve seen so far.

An innovative study of DNA ’s hidden structures may open up new approaches for the treatment and diagnosis of diseases, including cancer.

Researchers at the Garvan Institute have unveiled the first comprehensive map of over 50,000 i-motifs in the human genome, structures distinct from the classic double helix that may play crucial roles in gene regulation and disease. These findings highlight the potential of i-motifs in developing new therapies, particularly in targeting genes associated with cancers.

Unraveling the Mysteries of DNA i-Motifs.

Large-scale earthquakes and tsunamis have historically affected the western regions of the U.S. and Canada and are likely to do so in the future.

Off the southern coasts of British Columbia, Washington, Oregon, and northern California, a 600-mile-long strip exists where the Pacific Ocean floor gradually subducts eastward beneath North America.

This area, called the Cascadia Subduction Zone, hosts a megathrust fault, a place where tectonic plates move against each other in a highly dangerous way. The plates can periodically lock up and build stress over wide areas―eventually to be released when they finally lurch against each other.