SINGAPORE — Less than a week after a record 12.9 tonnes of pangolin scales were seized from a container by the authorities here, another 12.7 tonnes have been uncovered in a joint operation by the National Parks Board (NParks), Singapore Customs and the Immigration and Checkpoints Authority (ICA).
The 40ft (12m) container that was on its way by ship from Nigeria to Vietnam was declared to contain “cassia seeds” but was found on Monday (April 8) to be holding the animal parts, estimated to be worth about $51.6 million, in 474 bags at the Pasir Panjang Scanning Station.
The haul came from two species, the white-bellied tree pangolin (Phataginus tricuspis) and the giant ground pangolin (Smutsia gigantea) and are likely to have come from 21,000 pangolins.
An artificial neural network can reveal patterns in huge amounts of gene expression data, and discover groups of disease-related genes. This has been shown by a new study led by researchers at Linköping University, published in Nature Communications. The scientists hope that the method can eventually be applied within precision medicine and individualised treatment.
It’s common when using social media that the platform suggests people whom you may want to add as friends. The suggestion is based on you and the other person having common contacts, which indicates that you may know each other. In a similar manner, scientists are creating maps of biological networks based on how different proteins or genes interact with each other. The researchers behind a new study have used artificial intelligence, AI, to investigate whether it is possible to discover biological networks using deep learning, in which entities known as “artificial neural networks” are trained by experimental data. Since artificial neural networks are excellent at learning how to find patterns in enormous amounts of complex data, they are used in applications such as image recognition. However, this machine learning method has until now seldom been used in biological research.
“We have for the first time used deep learning to find disease-related genes. This is a very powerful method in the analysis of huge amounts of biological information, or ‘big data’,” says Sanjiv Dwivedi, postdoc in the Department of Physics, Chemistry and Biology (IFM) at Linköping University.
Developing an effective universal influenza vaccine against influenza virus with highly conserved antigenic epitopes could induce a broad-spectrum immune response to prevent infection.
(An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. For example, the epitope is the specific piece of the antigen to which an antibody binds. See picture1)
Toxic oil pollution has been detected in thousands of fish in the Gulf of Mexico, 10 years after the BP Deepwater Horizon oil spill. The spill was the largest in U.S. history and released millions of gallons of oil into the ocean.
The vaccine targets the novel coronavirus’s Achilles’ heel, its Receptor Binding Motif (RBM), a critical structure that enables the virus to bind to and infect a target cell. According to Prof. Gershoni, the vaccine would reconstruct the coronavirus’s RBM, a tiny feature of its “spike” protein. Though the virus uses many different proteins to replicate and invade cells, the “spike” protein is the major surface protein that it uses to bind to a receptor — another protein that acts like a doorway into a human cell. After the spike protein binds to the human cell receptor, the viral membrane fuses with the human cell membrane, allowing the genome of the virus to enter human cells and begin infection.
Tel Aviv University’s Professor Jonathan Gershoni has been awarded a US patent for a novel coronavirus vaccine design.
The virus is likely only to fuel the disaster preparedness industry in New Zealand and beyond. “Obviously the coronavirus is making people realize how vulnerable we all are, but what people are really concerned about is the aftermath,” said Vicino, the Vivos founder, who believes the wealthy fear an economic collapse or global depression could lead to uprisings against the top 1%. “They don’t want to have to defend their homes when the gangs of looters or marauders show up.”
This is my business, but I bet many never heard of this:
There’s diamond under them thar plants. A geologist has discovered a thorny, palmlike plant in Liberia that seems to grow only on top of kimberlite pipes—columns of volcanic rock hundreds of meters across that extend deep into Earth, left by ancient eruptions that exhumed diamonds from the mantle. If the plant is as choosy as it seems to be, diamond hunters in West Africa will have a simple, powerful way of finding diamond-rich deposits. Prospectors are going to “jump on it like crazy,” says Steven Shirey, a geologist specializing in diamond research at the Carnegie Institution for Science in Washington, D.C.
Miners have long known that particular plants can signal ore-bearing rocks. For example, Lychnis alpina, a small pink-flowering plant in Scandinavia, and Haumaniastrum katangense, a white-flowered shrub in central Africa, are both associated with copper. That’s because the plants are especially tolerant to copper that has eroded into soils from the mother lodes.
A low-cost, easy-to-build non-invasive ventilator aimed at supporting the breathing of patients with respiratory failure performs similarly to conventional high-quality commercial devices, according to new research published in the European Respiratory Journal.
Non-invasive ventilators are used to treat patients with breathing difficulty and respiratory failure, a common symptom of more severe coronavirus disease. Non-invasive ventilation is delivered using facemasks or nasal masks, which push a set amount of pressurized air into the lungs. This supports the natural breathing process when disease has caused the lungs to fail, enabling the body to fight infection and get better.
The research paper provides a free to replicate, open-source description for how to build the ventilator. The researchers say the prototype ventilator could support treatment of coronavirus and other severe respiratory diseases in low-income regions or where ventilator supplies are limited.
MANILA, Philippines — A dengue case forecasting system using space data made by Philippine developers won the 2019 National Aeronautics and Space Administration’s International Space Apps Challenge. Over 29,000 participating globally in 71 countries, this solution made it as one of the six winners in the best use of data, the solution that best makes space data accessible, or leverages it to a unique application.
Dengue fever is a viral, infectious tropical disease spread primarily by Aedes aegypti female mosquitoes. With 271,480 cases resulting in 1,107 deaths reported from January 1 to August 31, 2019 by the World Health Organization, Dominic Vincent D. Ligot, Mark Toledo, Frances Claire Tayco, and Jansen Dumaliang Lopez from CirroLytix developed a forecasting model of dengue cases using climate and digital data, and pinpointing possible hotspots from satellite data.
Correlating information from Sentinel-2 Copernicus and Landsat 8 satellites, climate data from the Philippine Atmospheric, Geophysical and Astronomical Services Administration of the Department of Science and Technology (DOST-PAGASA) and trends from Google search engines, potential dengue hotspots will be shown in a web interface.
Using satellite spectral bands like green, red, and near-infrared (NIR), indices like Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and Normalized Difference Vegetation Index (NDVI) are calculated in identifying areas with green vegetation while Normalized Difference Water Index (NDWI) identifies areas with water. Combining these indices reveal potential areas of stagnant water capable of being breeding grounds for mosquitoes, extracted as coordinates through a free and open-source cross-platform desktop geographic information system QGIS.